
API Overview Guide

9.0.1 Release



Copyright © 2025 OneStream Software LLC. All rights reserved.

Any warranty with respect to the software or its functionality will be expressly given in the

Subscription License Agreement or Software License and Services Agreement between

OneStream and the warrantee. This document does not itself constitute a representation or

warranty with respect to the software or any related matter.

OneStream Software, OneStream, Extensible Dimensionality, and the OneStream logo are

trademarks of OneStream Software LLC in the United States and other countries. Microsoft,

Microsoft Azure, Microsoft Office, Windows, Windows Server, Excel, Internet Information

Services, Windows Communication Foundation and SQL Server are registered trademarks or

trademarks of Microsoft Corporation in the United States and/or other countries. DevExpress is a

registered trademark of Developer Express, Inc. Cisco is a registered trademark of Cisco

Systems, Inc. Intel is a trademark of Intel Corporation. AMD64 is a trademark of Advanced Micro

Devices, Inc. Other names may be trademarks of their respective owners.



Table of Contents

Introduction 1

Development Technologies 2

Programming Language 2

User Interface Technology 2

Server Technology 3

Database Technology 3

Developer Fundamentals 4

VB.Net and C# 4

In-Solution Documentation 4

Business Rules Editor Overview 5

Helpful Resources 6

Platform Engines 8

Workflow Engine 8

Stage Engine 8

API Overview Guide i

Table of Contents



Finance Engine 9

Data Quality Engine 9

Data Management Engine 9

Presentation Engine 10

BRApi 10

API Structure and Organization 12

Namespaces 12

Namespaces Defined 13

Namespace Hierarchy 13

Microsoft Financial Calls 17

In-Solution Development 18

Custom Development 19

Using System Tools 20

System Business Rules 20

Database 22

Tables 22

API Overview Guide ii

Table of Contents



Tools 22

Data Records 22

Event Listing 23

Event Handler Business Rules 23

Event Firing Sequences 27

Finance Functions APIs 59

Member ID 60

Api.Pov.Time.MemberId 60

Api.Pov.Time.MemberId Usage 62

Api.Pov.Entity.MemberId 63

Api.Pov.Entity.MemberId Usage 64

Api.Pov.Account.MemberId 65

Api.Pov.Account.MemberId Usage 66

Dimension Primary Key - DimPk 67

DimPK Usage 67

API Overview Guide iii

Table of Contents



Dimension Type Id 69

DimTypeID Usage 70

Data Unit Dimension POV 71

Data Unit Dimension POV Usage 71

Time Functions 73

Api.Time.GetYearFromId 73

Api.Time.GetPeriodNumFromId 73

Api.Time.GetPeriodNumFromId Usage 74

Api.Time.GetNumDaysInTimePeriod 74

Api.Time.GetNumDaysInTimePeriod Usage 75

Api.Time.AddTimePeriods 76

Api.Time.AddTimePeriods Usage 76

Api.Time.AddYears 76

Api.Time.AddYears Usage 77

Using Member Functions for Calculations 78

GetMember 78

API Overview Guide iv

Table of Contents



GetMember Usage 78

GetMemberId 79

GetMemberID Usage 79

GetBaseMembers 80

GetBaseMembers Usage 80

Writing Stored Calculations 82

Overload Function 83

Api.Data.Calculate Usage 84

IsDurableCalculatedData 84

IsCurableCalculatedData Usage 84

Eval Function 85

Eval Function Usage 85

Summary 87

Remove Functions 88

RemoveZeros 88

RemoveNoData 89

API Overview Guide v

Table of Contents



Remove Functions Usage 90

GetDataBuffer Functions 92

GetDataBuffer Function 93

GetDataBuffer Usage 94

Unbalanced Math Functions 96

Unbalanced Math Functions 96

Unbalanced Math Functions Usage 97

GetDataBufferUsingFormula Function 97

FilterMembers 98

GetDataBufferUsingFormula Usage 98

API Overview Guide vi

Table of Contents



Introduction
The purpose of the API Guide is to provide detailed information about the technologies

and application programming interfaces available to consultants and developers

interested in extending the functionality of OneStream. 

This document contains information about the technologies used in the OneStream

product, naming conventions and organizational approaches used by the OneStream

engineering team.  It also includes detailed reference listings for API methods and events

exposed by OneStream.

To maintain optimal performance and ensure security, use public and documented APIs

only. Internal APIs are not intended for public general use and may be changed or

removed without notice. Support cannot provide assistance for issues resulting from the

uses of nonpublic features.

For customers in a OneStream-hosted environment, see the Identity and Access

Management Guide for information about authentication with OneStream IdentityServer

and using personal access tokens (PATs).

API Overview Guide 1

Introduction



Development Technologies

Programming Language
The OneStream platform is based on .Net Core. OneStream’s underlying codebase is

predominately made up of C# libraries with a few VB.Net libraries in use as well. C# and

Visual Basic .NET are the two primary programming languages used to code against

.NET Core. C# and VB.NET have very different syntax elements, but Microsoft developed

these languages simultaneously as part of a common .NET Core development platform.

Both C# and VB.Net are developed, managed, and supported by the same language

development team at Microsoft. They compile to the same intermediate language (IL)

which runs against the same .NET Core runtime libraries. Although programming syntax

is different for each language, almost every command in VB has an equivalent command

in C# and vice versa. Both languages reference the same underlying .NET Core Base

Classes to extend their functionality.

User Interface Technology
The OneStream user interface is based on the Windows Presentation Foundation (WPF)

in order to provide a truly rich end user experience. WPF employs XAML, an XML based

language, to define and link various interface elements. WPF applications can be

deployed as standalone desktop programs, or hosted as an embedded object in a

website. Windows 10 Store application development provides another opportunity for

WPF based applications to be deployed, but as Windows only applications.

API Overview Guide 2

Development Technologies



Server Technology
All OneStream code is hosted and executed with Microsoft Internet Information Services

(IIS). This means that both the Web Server (service code) and Application Server

(service code) are executed within an IIS Application Pool process host.  The code is

running on the application server tier hosted within the application sever IIS application

pool.  This is a very important concept to keep in mind because there will be times when a

Business Rule must interact with different elements of the system.  The context in which

the Business Rule is running needs to be understood in order to establish communication

and/or interact with those other system elements.

Database Technology
OneStream was designed to run on all versions of the Microsoft SQL Server relational

database engine (Express, Standard, Data Center, Enterprise and Azure Database as a

Service).  For larger organizations, the SQL Server Enterprise edition is recommended

because OneStreammakes use of table partitioning.  This enables maximum throughput

during heavily multi-threaded operations such as data transformation and consolidation. 

The OneStream engineering team is committed to fully utilizing the capabilities of the

most recent versions of SQL Server and to keeping the OneStream platform optimized for

new versions of SQL Server as they become available.

API Overview Guide 3

Development Technologies



Developer Fundamentals

VB.Net and C#
The OneStream platform is based entirely on .Net Core as is the Business Rules engine.

Therefore, VB.Net and C# are the logical choice for Business Rule syntax. At execution

time, all Business Rules are compiled on demand and cached for fast and reliable

execution. Writing a Business Rule in VB.Net or C# provides the end user with many

advantages over older products based on VBScript. Business Rule writers can expect

exceptional code performance, better error messaging, and better error handling because

VB.Net and C# are a full featured programming language. In the end, these capabilities

result in a more reliable Business Rule code.

NOTE: There are two broad Business Rule Classifications: Shared Business
Rules and Item Specific Business Rules. Shared Business Rules can be written

in either VB.NET or C#, Item Specific Business Rules can be written in VB.NET

only.

In-Solution Documentation
The Business Rule Editor includes context sensitive help for API properties and methods

as well as Snippets (code examples). In-solution documentation makes the process of

writing a Business Rule more efficient because both API Documentation, Objects, and

Samples are presented within the Business Rule Editor window.  In addition, useful

coding examples accumulated by the OneStream engineering and consulting teams are

also presented in context sensitive manner within the Business Rule editor.  Companies

and partners can author their own Snippets and include them in their application as an

API Overview Guide 4

Developer Fundamentals



extension of the OneStream predefined Snippets (Snippet Editor OneStream Solution

required). 

Business Rules Editor Overview
The Business Rule editor is a powerful in-solution screen that provides integrated API

context help, syntax editing with intelli-sense, and full outlining capabilities.  The actual

syntax content and Business Rule structure will be discussed at length in subsequent

sections of this document.

The image below explains the major regions and elements of the Business Rule editor. 

API Overview Guide 5

Developer Fundamentals



Helpful Resources

VB.Net

VB.Net is one of the most popular programming languages in use today.  This language is

especially popular amongst business users because the syntax is perceived to be more

readable and business user friendly than other programming languages.  VB.Net still

shares many of the same syntax elements of older VB dialects such as VB6, VBA and

VBScript.  This means that users who have written Macros in Microsoft Excel or used

VBScript to write Business Rules in first generation CPM solutions should feel

comfortable with the core syntax elements of VB.Net.  The main learning challenge

business users face when migrating to VB.Net is understanding the object oriented nature

of the language.  In comparison to VBScript, VB.Net offers more elegant coding

opportunities. Many of the statements and processes are manually created in VBScript,

but in VB.Net they are encapsulated in object libraries on which users can simply call. 

Microsoft VB.Net Learning

Getting comfortable with VB.Net takes a little awareness of the basic libraries and objects

provided by .Net Core.  The link below points to some resources that business users may

find helpful during the VB.Net learning process.

Microsoft Visual Basic

https://msdn.microsoft.com/en-us/library/2x7h1hfk.aspx

C#

C# (pronounced "See Sharp") is a modern, object-oriented, and type-safe programming

language. This language is especially popular amongst developers as it enabled them to

build many types of secure and robust applications that run in .NET. C# has its roots in the

API Overview Guide 6

Developer Fundamentals

https://msdn.microsoft.com/en-us/library/2x7h1hfk.aspx


C family of languages and will be immediately familiar to C, C++, Java, and JavaScript

programmers.

Microsoft C# Learning

The link below points to some resources that business users may find helpful during the

C# learning process.

https://docs.microsoft.com/en-us/dotnet/csharp/

API Overview Guide 7

Developer Fundamentals



Platform Engines
The platform is comprised of multiple processing engines.  These engines have distinct

responsibilities with respect to system processing and consequently they expose different

API interfaces to the Business Rules they call.  This section provides a brief overview of

each engine in the platform and describes the engine’s core responsibilities.

Workflow Engine
TheWorkflow Engine is thought of as the controlling engine or the puppeteer.  The main

responsibility of this engine is to control and track the status of the business processes

defined in the Workflow hierarchies.  This engine is primarily accessed through the BRApi

and can be called from other engines in order to check Workflow status during process

execution.  The Workflow Engine provides a very rich event model allowing each

Workflow process to be evaluated and reinforced with customer specific business logic if

required (see Appendix 2: Event Listing).

Stage Engine
The Stage Engine performs the task of sourcing and transforming external data into valid

analytic data points.  The main responsibility of this engine is to read source data (files or

systems) and parse the information into a tabular format.  This allows the data to be

transformed or mapped to valid Members defined by the Finance Engine.  The Stage

Engine is an in-memory, multi-threaded engine that provides the opportunity to interact

with source data as it is being parsed and transformed.  In addition to parsing and

transforming data, the Stage Engine also has a sophisticated calculation that enables

data to be derived and evaluated based on incoming source data.  The Stage Engine

API Overview Guide 8

Platform Engines



provides quality services to source data by validating, mapping, and executing Derivative

Check Rules.

Finance Engine
The Finance Engine is an in-memory financial analytic engine.  The main responsibility of

this engine is to enrich and aggregate base data cells into consolidated multi-Dimensional

information.  The Finance Engine provides the opportunity to define sophisticated

financial calculations through centralized Business Rules as well as member specific

Business Rules (Member Formulas). It works concurrently with the Stage Engine to

validate incoming intersections and works with the Data Quality Engine to execute

Confirmation Rules which are used to validate analytic data values.

Data Quality Engine
The Data Quality Engine is responsible for controlling data confirmation and certification

processes.  This Confirmation Engine is used to define and control the sequence of data

value checks required to assert the information submitted from a source system is

correct.  The Certification Engine is responsible for managing user certifications and

determining the Workflow dependents’ completion status.  This engine is primarily

accessed through the BRApi and may be called from other engines in order to check data

quality status during process execution.

Data Management Engine
The Data Management Engine provides task automation services to the platform.  This

engine executes batches of commands that are organized into sequences which contain

steps.  Steps represent entry points or mechanisms to execute features of other engines. 

API Overview Guide 9

Platform Engines



For example, the Clear Data Step uses the services of the Finance Engine.  In addition,

the Data Management Engine has the ability to execute a Business Rule Step which

executes a custom Business Rule as part of a Data Management Sequence.  This is an

incredibly powerful capability because it provides the ability to string together any

combination of predefined processing steps with custom Business Rule steps.

Presentation Engine
The Presentation Engine provides extensive data visualization services to platform.  The

Presentation Engine is made up of the following component engines: Cube View Engine,

Dashboard Engine, Parameter Engine, Book Engine and Extensible Document Engine. 

The Presentation Engine is responsible for managing and delivering content to the end

user as well as providing a development environment for custom user interface elements. 

This engine enables OneStream Solution application development capabilities and

continues to evolve with each product release.  Like the Data Management Engine, the

Presentation Engine interacts with and can call the services of all other engines in the

product.

BRApi
The BRApi is common across all Business Rules, engines and APIs being run, so it is not

an engine itself. A BRApi function runs outside of the other engines and can orchestrate

certain functions from within other engines. In other words, a BRApi function be run from

one engine (for example, Parser) to tell other engines (for example, Finance) to run their

own APIs (for example, API.Data.GetDataCellUsingMemberScript). For another

example, while the API.Data.GetDataCell function is available from within the Finance

engine, a similar BRApi called GetDataCellUsingMemberScript can be run from any

API Overview Guide 10

Platform Engines



engine if given the appropriate arguments. A common use is

BRApi.ErrorLog.LogMessage from any engine.

API Overview Guide 11

Platform Engines



API Structure and Organization

Namespaces
.Net Core organizes code libraries into subject areas called Namespaces. The process

begins with identifying the Namespaces (libraries) required for the procedure being

created. Namespaces provide distinction to the objects and methods that exist in a code

library. As a best practice, Namespaces typically start with the name of the company that

created the code library. This prevents naming conflicts for objects that share a common

name, but were created by different software providers.

In an effort to keep coding syntax as terse as possible, .Net Core allows the user to

specify common Namespaces to use at the top of a Business Rule. These lines are

preceded by the key word Imports. Adding Imports Statements prevents having to type an

object’s fully qualified name within a Namespace.

All Business Rules are prepopulated with both the commonly used Microsoft

Namespaces as well as the OneStream specific Namespaces. For example, adding the

statement Imports System.Math to a Business Rule enables access to objects in the

System.Math Namespace.  Instead of typing System.Math.Round(100.05,0), type Round

(100.05,0).

The example below shows the Namespace references used in a standard Extensibility

Rule.

API Overview Guide 12

API Structure and Organization



Namespaces Defined
OneStream is a large and sophisticated software platform and consequently a great deal

of effort went into organizing the code base into a hierarchical set of Namespaces. This

section defines the Namespace hierarchy and explains the primary purpose of the code

libraries in each Namespace. It is important to understand structure and meaning of the

platform Namespaces because most API methods accept and return objects defined

within specific Namespaces. By understanding the structure of the Namespace hierarchy,

developers can browse for objects using intelli-sense in the syntax editor. 

Namespace Hierarchy
The hierarchy below denotes the platform Namespaces and the object libraries contained

within them. This hierarchy is explored from within the Business Rule syntax editor by

typingOneStream. and navigating through the intelli-sense popup lists. This technique

helps find objects to pass into an API function, objects returned from an API function, or

common helper classes available in the platform.

OneStream (Root Namespace)

OneStream.BusinessRule

API Overview Guide 13

API Structure and Organization



OneStream.BusinessRule.Finance

OneStream.BusinessRule.Parser

OneStream.BusinessRule.Connector

OneStream.BusinessRule.ConditionalRule

OneStream.BusinessRule.DerivativeRule

OneStream.BusinessRule.DashboardDataSet

OneStream.BusinessRule.DashboardExtender

OneStream.BusinessRule.DashboardStringFunction

OneStream.BusinessRule.Extender

OneStream.Client

OneStream.Client.SharedUI

OneStream.Client.SharedUI.FinanceMsgStrings

OneStream.Client.SharedUI.FinanceUIStrings

OneStream.Client.SharedUI.GeneralMsgStrings

OneStream.Client.SharedUI.GeneralUIStrings

OneStream.Client.SharedUI.StageMsgStrings

OneStream.Client.SharedUI.StageUIStrings

OneStream.Client.SharedUI.StringResourceFileType

OneStream.Client.SharedUI.StringResourceHelper

API Overview Guide 14

API Structure and Organization



OneStream.Client.SharedUI.XFStrings

OneStream.Finance

OneStream.Finance.Engine

OneStream.Finance.Engine.DataApi

OneStream.Finance.Engine.EvalDataBufferDelegate

OneStream.Finance.Engine.FinanceRulesApi

OneStream.Finance.Engine.IAccountApi

OneStream.Finance.Engine.ICalcStatusApi

OneStream.Finance.Engine.IConsApi

OneStream.Finance.Engine.ICubesApi

OneStream.Finance.Engine.IDimensionsApi

OneStream.Finance.Engine.IEntityApi

OneStream.Finance.Engine.IFlowApi

OneStream.Finance.Engine.IFunctionsApi

OneStream.Finance.Engine.IFxRatesApi

OneStream.Finance.Engine.IMembersApi

OneStream.Finance.Engine.IPovApi

OneStream.Finance.Engine.IScenarioApi

OneStream.Finance.Engine.ITimeApi

API Overview Guide 15

API Structure and Organization



OneStream.Finance.Engine.IUDApi

OneStream.Finance.Engine.IViewApi

OneStream.Finance.Engine.IWorkflowApi

OneStream.Stage

OneStream.Stage.Engine

OneStream.Stage.Engine.Parser

OneStream.Stage.Engine.ParserDimension

OneStream.Stage.Engine.TransformerDataCache

OneStream.Stage.Engine.Transformer

OneStream.Stage.Engine.TransformerDimension

OneStream.Stage.Engine.TransformRuleCache

OneStream.Shared

OneStream.Shared.Engine

OneStream.Shared.Engine.ExternalWcfClient

OneStream.Shared.Engine.TaskActivityStepWrapperItem

OneStream.Shared.Database

OneStream.Shared.Database.DbConnInfo

OneStream.Shared.Common

API Overview Guide 16

API Structure and Organization



OneStream.Shared.Common.(Various Constants, Helper Classes & Data

Transfer Objects ‘DTO’ )

OneStream.Shared.Wcf

OneStream.Shared.Wcf.(Various Constants & Data Transfer Objects

‘DTO’)

Microsoft Financial Calls
Financial calls are part of the Microsoft.VisualBasic namespace, and can be used to for

calculations such as:

l Depreciation

l Present and future values

l Interest rates

l Rates of return

l Payments

These functions are available to anyone with access to Business Rules. They can be

explored within the Business Rule syntax editor by typing Microsoft.VisualBasic.Financial

then navigating through the intelli-sense popup lists.

To view all methods from the Microsoft.Visual Basic Financial class used in a Business

Rule:

1. Navigate to the Business Rule Editor:

a. In the OneStream Software application, click the Application tab.

b. Under Tools, click Business Rules.

API Overview Guide 17

API Structure and Organization



c. Expand the appropriate Business Rules category or click Search on the
toolbar.

2. Click the Formula tab.

3. In the editor window, typeMicrosoft.Visualbasic.Financial.

A list of methods displays.

In-Solution Development
In-solution development is the process of creating OneStream Business Rules to deliver

domain specific solutions.  This means that all Business Rules are executed within the

API Overview Guide 18

API Structure and Organization



application server process space.  The code written is only executed on the application

servers where OneStream is deployed. 

Developing within the application server environment enables solution developers to

focus on the business problem instead of common programming concerns.  The platform

takes care of managing connections, moving data between application tiers, and load

balancing server activities.

In some cases, in-solution development is seen as a limitation because the developer is

restricted to coding within the application server tier.  However, in most cases the

efficiency and quality gained by developing within the platform out ways any limitations

imposed by coding at the application server tier.

Custom Development
Custom development refers to stand alone application development that interacts with the

platform at the web server tier. 

Custom Web Development

The platform has the ability to display web pages within a custom Dashboard.  This allows

completely custom web applications to surface within the OneStream Solution .

OneStream can pass information about the user’s POV andWorkflow as URL

Parameters enabling the custom web application to act as part of an integrated solution.

With this capability, developers are free to create and incorporate any solution they can

imagine.

API Overview Guide 19

API Structure and Organization



Using System Tools

System Business Rules
System Extender Business Rules are used in coordination with Azure Server Sets for

elastic scalability at the Azure Database and Server Sets level. Server and eDTU scaling

can be accomplished manually or via System Business Rules.  If System Business Rules

is selected as a Scaling Type, then OneStream will call a user-defined System Extender

Business Rule to determine if scaling is needed.  The user is responsible for

implementing the scaling function and returning the proper scaling object to OneStream.

This can be accomplished by adding a System Extender Business Rule and assigning it

appropriately.

Under each Case statement, these rules and related Args and BRApis can be used to

check the current Server Set capacity, query metrics about a Server Set or Azure

Database and impact the volume of Server Sets or level of Azure Database deployed.

Refer to the Installation and Configuration Guide under Azure Database Connection

Settings and Server Sets for where to refer to these Business Rules. Example starting

point of empty System Extender Business Rule upon creation:

API Overview Guide 20

Using System Tools



Sample System Business Rule
Metrics data is passed to this function to help the user determine whether the server or

database needs to be scaled or not.  Depending on what is being scaled, different metric

data is passed in.  For server scaling, Environment metrics and Scale Set metrics are

passed in to help determine scaling.  For database scaling, Environment metrics and SQL

Server Elastic Pool metrics are passed in to help determine scaling.

API Overview Guide 21

Using System Tools



Database
The Database screen allows System Administrators to view all of OneStream’s database

tables and provides tools for managing stored data and other information.

Tables
This gives read-only access to all data tables in the database and can be used for tasks

such as trying to debug issues without having access to the database, or deletion logging.

Tools
Database Tools allow System Administrators to manage the database.

Data Records
Enter a Member Filter in order to view data for the entire system.

API Overview Guide 22

Using System Tools



Event Listing

Event Handler Business Rules
WCF Event Handler

This allows direct interaction with the Microsoft Windows Communication Foundation

which means it listens to communication between the client and the web server. The rule

will intercept the communication, analyze it, and if certain criteria is met, it will run its logic. 

This is quite flexible and has a variety of uses such as creating, reading, deleting, and

updating different types of objects in the system for users in a group or Transformation

Rule changes. For example, a rule can be created to e-mail an auditor about every

metadata change as it happens.

Transformation Event Handler
This can be run at various points from Import through Load. Available operations:

StartParseAndTransForm

InitializeTransFormer

ParseSourceData

LoadDataCacheFromDB

ProcessDerivativeRules

ProcessTransformationRules

DeleteData

DeleteRuleHistory

WriteTransFormedData

API Overview Guide 23

Event Listing



SummarizeTransFormedData

CreateRuleHistory

EndParseAndTransForm

FinalizeParseAndTransForm

StartRetransForm

EndRetransForm

FinalizeRetransForm

StartClearData

EndClearData

FinalizeClearData

StartValidateTransForm

ValidateDimension

EndValidateTransForm

FinalizeValidateTransForm

StartValidateIntersect

EndValidateIntersect

FinalizeValidateIntersect

LoadIntersect

StartLoadIntersect

EndLoadIntersect

FinalizeLoadIntersect

API Overview Guide 24

Event Listing



Journals Event Handler
This can be run before, during, or after a Journal operation such as Submission,

Approval, or Post. Available operations:

SubmitJournal

ApproveJournal

RejectJournal

PostJournal

UnpostJournal

StartUpdateJournalWorkflow

EndUpdateJournalWorkflow

FinalizeUpdateJournalWorkflow

Save Data Event Handler
This is run in order to track all save events in an application.

Forms Event Handler
This can be run before, during, or after an operation such as Form Save. Available

operations:

SaveForm

CompleteForm

RevertForm

StartUpdateFormWorkflow

EndUpdateFormWorkflow

FinalizeUpdateFormWorkflow

API Overview Guide 25

Event Listing



Data Quality Event Handler
This can be run before, during, or after data quality events like Confirmation and

Certification. Available operations:

StartProcessCube

Calculate

Translate

Consolidate

EndProcessCube

FinalizeProcessCube

PrepareICMatch

StartICMatch

PrepareICMatchData

EndICMatch

StartConfirm

EndConfirm

FinalizeConfirm

SaveQuestionResponse

StartSetQuestionairreState

SaveQuestionairreState

EndSetQuestionairreState

StartSetCertifyState

SaveCertifyState

API Overview Guide 26

Event Listing



EndSetCertifyState

FinalizeSetCertifyState

Data Management Event Handler
This can be run before or after a Data Management Sequence or Step runs. Available

operations:

StartSequence

ExecuteStep

EndSequence

Workflow Event Handler
This can be run before or after a Workflow execution step. Available operations:

UpdateWorkflowStatus

WorkflowLock

WorkflowUnlock

Event Firing Sequences
OneStream fires a series of events when completing tasks via Event Handler Business

Rules.  The example below explains how to read the table which provides the firing

sequence when running a specific task.

API Overview Guide 27

Event Listing



Clear Cube Data

API Overview Guide 28

Event Listing



API Overview Guide 29

Event Listing



Clear Stage Data

API Overview Guide 30

Event Listing



API Overview Guide 31

Event Listing



Execute Data Management

Import Data Connection

API Overview Guide 32

Event Listing



API Overview Guide 33

Event Listing



Import Excel File

API Overview Guide 34

Event Listing



API Overview Guide 35

Event Listing



API Overview Guide 36

Event Listing



API Overview Guide 37

Event Listing



API Overview Guide 38

Event Listing



API Overview Guide 39

Event Listing



Import Text File

API Overview Guide 40

Event Listing



API Overview Guide 41

Event Listing



API Overview Guide 42

Event Listing



Process Form

API Overview Guide 43

Event Listing



API Overview Guide 44

Event Listing



Process Journal

API Overview Guide 45

Event Listing



API Overview Guide 46

Event Listing



Process Workflow

API Overview Guide 47

Event Listing



API Overview Guide 48

Event Listing



API Overview Guide 49

Event Listing



API Overview Guide 50

Event Listing



API Overview Guide 51

Event Listing



API Overview Guide 52

Event Listing



API Overview Guide 53

Event Listing



API Overview Guide 54

Event Listing



API Overview Guide 55

Event Listing



API Overview Guide 56

Event Listing



API Overview Guide 57

Event Listing



API Overview Guide 58

Event Listing



Finance Functions APIs

API Overview Guide 59

Finance Functions APIs



Member ID
There are many functions that use MemberID as an integer to pass in as a property.

These functions get the current POV of the specific Dimension member to perform a

variety of tasks, such as:

l Get Current Year based on Time POV

o Example: Api.Time.GetYearFromId(api.Pov.Time.MemberId)

l Get Text field value from Entity POV

o Example: Api.Entity.Text(api.Pov.Entity.MemberId, 1)

l Get Account Type based on current Account POV

o Example: Api.Account.GetAccountType(api.Pov.Account.MemberId)

When working with formulas and calculations, it is better to work with MemberId versus

Member Name.

Api.Pov.Time.MemberId
Api.Pov.Time.MemberId is obtained from the Time Member Id for the current POV being

executed during the calculation. The Time.MemberId is stored as an unique integer to

represent a single Time member. The uniqueness is determined by the combination of

the Year and Period.

API Overview Guide 60

Member ID



H1 = 001                    

Q1 = 002

M1 = 003            

M2 = 004

M3 = 005

Q2 = 006

M4 = 007

M5 = 008

M6 = 009

H2 = 010

API Overview Guide 61

Member ID



Q3 = 011

M7 = 012

M8 = 013

M9 = 014

Q4 = 015

M10 = 016

M11 = 017

M12 = 018

The Time MemberId is constructed like this:  2019003000

The api.Pov.Time.MemberId is used as a property in many functions. Here are some of

the most common functions:

l api.Time.GetYearFromId

l api.Time.GetPeriodNumFromId

l api.Time.GetNumDaysInTimePeriod

l api.Time.AddTimePeriods

l api.Time.AddYears

Api.Pov.Time.MemberId Usage
Example using api.Pov.Time.MemberId:

ErrorLog result:

API Overview Guide 62

Member ID



Example using api.Pov.Time.MemberId in a working formula:

Api.Pov.Entity.MemberId
Api.Pov.Entity.MemberId is obtained from the Entity Member Id for the current Entity POV

being executed during the calculation. The Entity.MemberId is stored as a unique integer

to represent a single Entity member. The Entity Member Id is also found using the Grid

View in the Entity Dimension Library.

Api.Pov.Entity.MemberId is used as a property in many functions.  Here are some of the

most common functions:

API Overview Guide 63

Member ID



l Get Local Currency Id for current Entity POV.

o Example: api.Entity.GetLocalCurrencyId(api.Pov.Entity.MemberId)

l Get Local Currency Cons Member Name for current Entity POV.

o Example:

api.Entity.GetLocalCurrencyConsMember(api.Pov.Entity.MemberId).Name

l Get value in Text Field for Dimension Members prior to executing formula

calculation.

o Example: api.Entity.Text(api.Pov.Entity.MemberId, 1)

l Get Percent Consolidation for Parent Child Relationship and specific to user

localization. Can also determine by Scenario Type and Time.

o Example: api.Entity.PercentConsolidation(api.Pov.Entity.MemberId,

api.Pov.Parent.MemberId, api.Pov.ScenarioTypeId,

api.Pov.Time.MemberId).XFToStringForFormula

l Get Percent Ownership for Parent Child Relationship and specific to user

localization. Can also determine by Scenario Type and Time.

o Example: api.Entity.PercentOwnership(api.Pov.Entity.MemberId,

api.Pov.Parent.MemberId, api.Pov.ScenarioTypeId,

api.Pov.Time.MemberId).XFToStringForFormula

Api.Pov.Entity.MemberId Usage
Example using api.Pov.Entity.MemberId:

ErrorLog Result:

API Overview Guide 64

Member ID



Example using api.Pov.Entity.MemberId in a working formula:

Api.Pov.Account.MemberId
Api.Pov.Account.MemberId is obtained from the Account Member Id for the current

Account POV being executed during the calculation. The Account.MemberId is stored as

a unique integer to represent a single Account member. The Account Member Id is also

found using the Grid View in the Account Dimension Library.

Api.Pov.Account.MemberId is used as a property in many functions. Here are some of the

most common functions:

API Overview Guide 65

Member ID



l Get Account Type based on current Account POV

o Example: api.Account.GetAccountType(api.Pov.Account.MemberId)

l Get value in Text Field for Dimension Members prior to executing formula

calculation

o Example: api.Account.Text(api.Pov.Account.MemberId, 1)

Api.Pov.Account.MemberId Usage
Example using api.Pov.Account.MemberId :

ErrorLog Result:

Example using api.Pov.Account.MemberId in a working formula:

API Overview Guide 66

Member ID



Dimension Primary Key - DimPk
DimPk is known as Dimension Primary Key. This is a unique primary key that is assigned

to Dimensions when they are created. It is a combination of the DimTypeId and the DimId.

DimPk is commonly used to identify which Dimension should be used when checking for

members as base members or descendants in a specific Dimension. DimPk is commonly

used in the following functions:

l Get Dimension Primary Key of a Specific Dimension

o Example: api.Dimensions.GetDim("UD1DimName").DimPk

l Check if it is a Base Member of a Specific Ancestor

o Example: api.Members.IsBase(dimPk, ancestorMemberId, baseMemberId,

dimDisplayOptions)

l Get Base Members of Parent from GetMember

o Example: api.Members.GetBaseMembers(api.Pov.UD1Dim.DimPk,

parent.MemberId, Nothing)

DimPK Usage
Example using DimPK :

ErrorLog Result:

API Overview Guide 67

Dimension Primary Key - DimPk



Example using api.Pov.UD1Dim.DimPk in a working formula:

API Overview Guide 68

Dimension Primary Key - DimPk



Dimension Type Id
Dimension Type Id is a property of DimPk. The Dimension Type Id is a unique integer Id

that is assigned to a Dimension. The DimTypeId is found in the Dim table and the

DimTypeId represents each Dimension.

l Entity = 0

l Scenario = 2

l Account = 5

l Flow = 6

l UD1 = 9

l UD2 = 10

l UD3 = 11

l UD4 = 12

l UD5 = 13

l UD6 = 14

l UD7 = 15

l UD8 = 16

The DimTypeId is used in various functions. DimTypeId is most commonly used with the

GetMember or GetMemberId functions where the first property in the function is

DimTypeId. In this case, GetMember and GetMemberId needs to know which Dimension

Id to use for the member the function is looking for.

API Overview Guide 69

Dimension Type Id



l Get a specific Member in a specific Dimension

o Example: api.Members.GetMember(DimType.Account.Id,

"AcctMemberName")

l Get Member Id for a specific Member in a specific Dimension

o Example: api.Members.GetMemberId(DimType.Account.Id,

"AcctMemberName")

DimTypeID Usage
Example using DimTypeId :

ErrorLog Result:

Example using DimType.Account.Id in a working formula:

API Overview Guide 70

Dimension Type Id



Data Unit Dimension POV
Stored calculations run based on the Data Unit POV. The Data Unit Dimension consists of

Cube, Entity, Parent, Consolidation, Time, and Scenario. 

Because stored calculations run off Data Unit Dimensions, these Dimensions are used as

part of If Statements to execute calculations on conditions. The Data Unit Dimensions

should not be used as destination data buffers, and should not be used on the left hand

side of the equation in a api.Data.Calculate formula.

Account related Dimensions such as Account, Flow, and UD’s are not available at run-

time of the calculations. Therefore, they cannot be used in the If Statements for stored

calculations. However, they are available for Dynamic Calculations. 

Run for POV and Check Member Names for Data Unit Dimensions Before Executing

Calculation:

l If api.Pov.Cube.Name.XFEqualsIgnoreCase("CubeName") Then

l If api.Pov.Entity.Name.XFEqualsIgnoreCase("EntityName") Then

l If api.Pov.Scenario.Name.XFEqualsIgnoreCase("ScenarioName") Then

l If api.Pov.Cons.Name.XFEqualsIgnoreCase("USD") Then

Data Unit Dimension POV Usage
Example using api.Pov.Entity.Name :

ErrorLog Result:

API Overview Guide 71

Data Unit Dimension POV



Example using api.Pov.Entity.Name in a working formula:

API Overview Guide 72

Data Unit Dimension POV



Time Functions
The following APIs are some of the most common time functions:

l api.Time.GetYearFromId

l api.Time.GetPeriodNumFromId

l api.Time.GetNumDaysInTimePeriod

l api.Time.AddTimePeriods

l api.Time.AddYears

Api.Time.GetYearFromId
This function gets the year from the current POV Time Id. It evaluates the year and then

introduces logic to execute the formula. 

Api.Time.GetPeriodNumFromId
This function gets the period number from the current POV Time Id. The period is static

and is configured with either months or weeks followed by the period number. For

API Overview Guide 73

Time Functions



example: M1 – M12 or W1 –W54. It evaluates the period number and then introduces

logic to execute the formula.

Api.Time.GetPeriodNumFromId Usage
Example using api.Time.GetPeriodNumFromId :

ErrorLog Result:

Example using api.Time.GetPeriodNumFromId in a working formula:

Api.Time.GetNumDaysInTimePeriod
This function gets the number of days from the current POV Time Id. The number of days

are already programmed depending on the month that is selected. It evaluates the

API Overview Guide 74

Time Functions



number of days for a period and then introduces logic to execute the formula. 

Api.Time.GetNumDaysInTimePeriod Usage
Example using api.Time.GetNumDaysInTimePeriod:

ErrorLog Result:

Example using api.Time.GetNumDaysInTimePeriod in a working formula:

API Overview Guide 75

Time Functions



Api.Time.AddTimePeriods
This function adds time periods to the current POV Time Id. It passes that data to different

functions like GetPeriodNumFromId and then introduces logic to execute the formula.

Api.Time.AddTimePeriods Usage
Example using api.Time.AddTimePeriods:

ErrorLog Result:

Example using api.Time.AddTimePeriods in a working formula:

Api.Time.AddYears
This function adds years to the current POV Time Id. It passes that data to different

functions like GetYearFromId or GetPeriodNumFromId and then introduces logic to

API Overview Guide 76

Time Functions



execute the formula. 

Api.Time.AddYears Usage
Example using api.Time.AddYears:

ErrorLog Result:

Example using api.Time.AddYears in a working formula:

API Overview Guide 77

Time Functions



Using Member Functions for
Calculations
Calculation Member functions are commonly used through the Finance Api’s for

accessing general information for any specified Member within a dimension. The Member

functions allow a rule writer to identify members, get member information, and identify

base and parent members to execute within Member Formulas and Business Rules.

The following are some of the most common Member functions for calculations:

l GetMember

l GetMemberID

l GetBaseMembers

GetMember
This function gets a specific dimension member. It is used for different functions like

api.Data.FormulaVariables, GetBaseMembers function, custommember lists, and when

working with Member Id within data buffers for processes like custom consolidation.

GetMember Usage
Example using GetMember:

ErrorLog Result:

API Overview Guide 78

Using Member Functions for Calculations



Example using GetMember in a working formula:

GetMemberId
This function gets a specific dimension member Id. This technique is commonly used

when working with source Data Buffers where the cells for a specific member Id need to

be changed.

GetMemberID Usage
Example using GetMemberId:

ErrorLog Result:

Example using GetMemberId in a working formula:

API Overview Guide 79

Using Member Functions for Calculations



GetBaseMembers
This function gets base members from a specific parent member. It is commonly used

when working with Member Lists as part of FinanceFunctionType.MemberList, or to get

base members to loop through specific dimensions for api.Data.GetDataCell.

GetBaseMembers Usage
Example using GetBaseMembers:

ErrorLog Result:

API Overview Guide 80

Using Member Functions for Calculations



Example using GetBaseMembers in a working formula:

API Overview Guide 81

Using Member Functions for Calculations



Writing Stored Calculations
When writing a Member Formula or a Business Rule for a Stored Calculation, the new

calculated numbers store data for that Cube, Entity, Parent, Cons, Scenario, and Time

combination. For example, a Data Unit.

Return is never seen in a Member Formula for Formula Pass. Instead of being returned,

many numbers are calculated and stored. When running a Calculation, Translation, or

Consolidation, it calls the Member Formula once for an entire Data Unit.  OneStream

does not tell with which Account, Flow, or User Defined the numbers are being saved.

Initially, this may be confusing because Member Formulas are often written in an

account’s Formula property, and administrators believe OneStream will only allow that

specific Member Formula to write to that specific account. However, putting a Member

Formula in an account’s Formula property is only for organizational purposes. When

OneStream calls that formula, it is currently calculating a Data Unit and will initialize the

API engine with only the Data Unit Dimensions.

Basic stored formulas are commonly used via the Api.Data.Calculate api function. 

Api.Data.Calculate is used in three different ways:

l Api.Data.Calculate using Formula as String, Overload Functions, Eval Function,

and IsDurableCalculatedData

l Api.Data.Calculate using Formula as String and IsDurableCalculatedData

API Overview Guide 82

Writing Stored Calculations



l Api.Data.Calculate using Formula as String and Eval Function

Overload Function
The most common function is Api.Data.Calculate, which sets the value of one or more

dimension values (left side of formula) equal to another (right side). Final arguments

(optional) are added to the formula for Overload Functions, Evals, and Durable Data. 

The Api.Data.Calculate function must abide by the data explosion rules, which means

that the left side and the right side of the formulas are balanced with the same dimension

values on both sides. If a Member is specified for a Dimension anywhere on the right side

of the equation, you must explicitly specify something for that Dimension on the left side of

the equation.

This variation of the Api.Data.Calculate provides Member Filters (all optional) which can

be used to filter the results before saving them to the target or destination. This function is

the most powerful of the Api.Data.Calculate functions as it allows you to filter

intersections. In addition, the Eval function adds the ability to filter down the number of

individual data cells processed by data cell attributes such as CellAmount or CellStatus.

This function is commonly used to filter the source data buffer by base members of an

Account related dimension. For example, A#Sales may be the source data buffer but the

need for all products is not required for the calculation. Instead, A#Sales may need to be

calculated by the base members of Clubs. By using Clubs.Base for A#Sales, the A#Sales

data buffer has been reduced to only include Clubs.Base. 

API Overview Guide 83

Writing Stored Calculations



Api.Data.Calculate Usage
Example using Overload Function in a working formula:

IsDurableCalculatedData
This variation of Api.Data.Calculate lets you define whether data is durable or not.

Durable data is not cleared automatically when a Data Unit is re-calculated. It can only be

cleared by calling api.Data.ClearCalculatedData with the clearDurableCalculatedData

Boolean property set to True. As part of the standard Calculation sequence that runs

during a Calculate or Consolidate, Durable data will be ignored from processing the clear,

unless the clear is specifically defined within the Business Rule or Member Formula.

The most common reason to set the IsDurableCalculatedData to True is for seeding

purposes. As part of the first seeding, the goal may be to seed from one Scenario to

another just once and never seed it again. In this case, the seeded data should not be

cleared at any point during the Calculate or Consolidate process. This technique is

commonly used in Budget or Forecast processes where you are executing the seeding

through a Dashboard. The formula may be applied as a

FinanceFunctionType.CustomCalculate or a FinanceFunctionType.Calculate in a

Business Rule.

IsCurableCalculatedData Usage
Example using IsDurableCalculatedData in a working formula:

API Overview Guide 84

Writing Stored Calculations



Eval Function
Eval has an advanced capability that lets you get at the individual Data Cells in any Data

Unit created while processing an api.Data.Calculate script. It allows Eval() to be wrapped

around a subset of the formula’s math in order to evaluate the Data Buffer that was just

created by running that math.

Prior to the 5.0 version and the introduction of the RemoveNoData function, Eval was

commonly used to evaluate individual data cells in a source data buffer to process based

on cell amount or cell status. Evaluating the number of No Data Cells for a Data Unit is an

important factor for performance and calculation efficiencies. 

Eval was initially an important function to evaluate individual data cells but it has been

replaced with newer techniques such as GetDataBuffer and

GetDataBufferUsingFormula, and looping through cells within the data buffer, as well as

the Remove functions.

Eval Function Usage
Example using Eval in a working formula:

API Overview Guide 85

Writing Stored Calculations



API Overview Guide 86

Writing Stored Calculations



Summary
The Api.Data.Calculate is the easiest and simplest way to write a formula as a Member

Formula or a Business Rule. The construction of an Api.Data.Calculate formula must be

balanced on each side of the formula with the appropriate dimensions to prevent data

explosion. There are three different ways to use the Api.Data.Calculate function: Formula

with Overload, Formula with IsDurableCalculatedData, and Formula with Eval.

From a performance perspective:

1. Never use the Api.Data.Calculate in a loop when using variables.

2. Use Remove functions whenever possible especially for sparse data models with

lots of NODATA cells.

3. GetDataBuffer and GetDataBufferUsingFormula may have a better performance

impact. Try replacing Api.Data.Calculate when doing math with GetDataBuffer

math. In some cases, performance is better by using GetDataBuffer functions in

place of Api.Data.Calculate.

API Overview Guide 87

Summary



Remove Functions
Remove Functions were introduced in the 5.0 release. They replaced the reasons to use

the Eval function. The basic need of the Eval function was to evaluate the individual data

cells within a source data buffer to apply logic for processing. In many cases, OneStream

did not want to process data cells in source data buffers that had a Cell Status of

NODATA or Cell Amount = 0. With the 5.0 release, functions do that without the need for

writing additional logic.

The RemoveNoData and RemoveZeros functions provide the ability to not process
individual data cells within a source data buffer. They wrap the Remove() around a subset

of the formula to prevent processing of individual data cells from within a source data

buffer. Remove functions are used in Member Formulas or Business Rules.

Remove functions are used for performance reasons. Data Units may contain a great

amount of NODATA data cells or 0 value data cells. These cells could be needlessly

processed during calculation execution if these functions are not used in a

Api.Data.Calculate formula.

RemoveZeros
RemoveZeros is used to remove data cells with a cell amount of 0 from the source data

buffer. In addition, this function removes data cells with a cell status of NODATA from the

source data buffer. It is important to evaluate if the 0s are needed for the

Api.Data.Calculate formula during calculation execution.

API Overview Guide 88

Remove Functions



RemoveNoData
RemoveNoData removes data cells with a cell status of NODATA ONLY from the source

data buffer. Unlike the RemoveZeros function, this function does not remove data cells

with a cell amount of 0.

NODATA cells and 0 cells can be found using the following methods:

1. Review the Data Unit Statistics when you right-click on a cell in Cube View.

2. Review the Application Analysis Dashboard and check the Entity Data Statistics

Report.

This is based on the Data Unit and Entity Data Statistics. There may be many Member

Formulas and Business Rules that are driving data creation. Therefore, all formulas would

need to be evaluated to determine whether these Remove functions are used. The higher

the percentage ratio of NODATA cells to Total Number of Stored Records, the more

important it is to use these Remove functions.

Example =  3,203 Stored Records with 2,019 of those Stored Records as NODATA

cells. Nearly 65% of the Data Unit has NODATA cells to process which causes extra

calculation time.

The Review functions can be found in Key Functions under Snippets.

API Overview Guide 89

Remove Functions



Remove Functions Usage
Example using RemoveZeros in a working formula:

API Overview Guide 90

Remove Functions



Example using RemoveNoData in a working formula:

API Overview Guide 91

Remove Functions



GetDataBuffer Functions
AMember Script may not be defined for the Api.Data.Calculate function because multiple

Data Cells, which seem completely unrelated to each other, are being processed and

none of the Dimension Members are constant. For those situations, use the

GetDataBuffer and SetDataBuffer functions.

GetDataBuffer and SetDataBuffer are more fundamental than using an Eval

function. They allow you to read numbers using a Member Script, process or modify each

cell in the result, and then save the changes. Common GetDataBuffer functions include:

l GetDataBuffer

l GetDataBufferForCustomShareCalculation

l GetDataBufferForCustomElimCalculation

l GetDataBufferUsingFormula

l SetDataBuffer

When using api.Data.Calculate functions, it is important to know which Member a formula

is attached to. For example, if the formula starts with Api.Data.Calculate(“A#Sales1 =

…”), put the formula in the Sales1 account Member’s Formula setting.

However, when using GetDataBuffer functions, the formula may not be writing to a

specific Member. Every Data Cell saved is possibly written to a different dimension

member. In this case, the logic can be developed in a Business Rule and could be created

as a Sub routine to execute throughout Finance Business Rules.

API Overview Guide 92

GetDataBuffer Functions



GetDataBuffer Function
GetDataBuffer retrieves a Data Unit’s values during a particular consolidation,

calculation, or translation. When using GetDataBuffer, this is equivalent to the source

data buffer or to the right side of the equation for Api.Data.Calculate. Depending on which

GetDataBuffer function you are using, three or four properties can be used. 

For the basic GetDataBuffer, three properties are used:

l ScriptMethodType As DataApiScriptMethodType

l SourceDataBufferScript As String

l ExpressionDestinationInfo As ExpressionDestinationInfo

The scriptMethodType typically uses the Calculate option for DataApiScriptMethodType.

The sourceDataBufferScript is equivalent to the right side of the equation for the

Api.Data.Calculate.

The expressionDestinationInfo is equivalent to the left side of the equation for the

Api.Data.Calculate. Frequently, this gets manipulated using the Dimension Id, passing in

the Dimension Member Id for the data buffer primary key.

The GetDataBuffer can be used in various ways, and is not limited to the following:

1. Use Data Buffers to perform Data Buffer math. In some cases, this can perform

better than an Api.Data.Calculate.

2. Use GetDataBuffer in place of Api.Data.Calculate to use in Sub routines which

execute code and instructions, are stored in memory, and are used within Functions

throughout Finance Business Rules.

API Overview Guide 93

GetDataBuffer Functions



GetDataBuffer Usage
Example using GetDataBuffer with Data Buffer Math in a working formula:

Example using GetDataBuffer and SetDataBuffer in Business Rule Using Sub Routine in

a working formula:

API Overview Guide 94

GetDataBuffer Functions



API Overview Guide 95

GetDataBuffer Functions



Unbalanced Math Functions

Unbalanced Math Functions
Unbalanced math functions are required when performing math with two Data Buffers,

where the second Data Buffer needs to specify additional dimensionality. The term

Unbalanced is used because the script for the second Data Buffer can represent a

different set of Dimensions from the other Data Buffer in the api.Data.Calculate

text. These functions prevent data explosion. The four Unbalanced Math functions are:

l AddUnbalanced

o Example: api.Data.Calculate("A#TargetAccount = AddUnbalanced

(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

l SubtractUnbalanced

o Example: api.Data.Calculate("A#TargetAccount = SubtractUnbalanced

(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

l MultiplyUnbalanced

o Example: api.Data.Calculate("A#TargetAccount =MultiplyUnbalanced

(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

l DivideUnbalanced

o Example: api.Data.Calculate("A#TargetAccount =DivideUnbalanced

(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

When using Unbalanced Math functions, the first two parameters represent the first and

second Data Buffers on which to perform the function. The third parameter represents the

Members to use from the second Data Buffer when performing math with every

API Overview Guide 96

Unbalanced Math Functions



intersection in the first Data Buffer. The math favors the intersections in the first Data

Buffer without creating additional intersections.

It is important that the dimensionality of the Target (left side of the equation) matches the

dimensionality of the first data buffer on the right side of the equation (argument 1).

Often, these functions would be used when one source data buffer is doing math with a

specific data cell intersection. This could be a rate, driver, or some data cell input.

Unbalanced Math Functions Usage
Example using MultiplyUnbalanced in a working formula:

GetDataBufferUsingFormula Function
The GetDataBufferUsingFormula function uses an entire math expression to calculate a

final data buffer. GetDataBufferUsingFormula can perform the same data buffer math as

Api.Data.Calculate, but the result is assigned to a variable, where Api.Data.Calculate

actually saves the calculated data. 

GetDataBufferUsingFormula calculates multiple source data buffers first. Then, the result

of the math is stored in memory using a Formula Variable. Finally, the Formula Variable is

used anywhere within the Member Formula or Business Rule. This function is commonly

used during rule writing for Planning Business Rules using MultiplyUnbalanced, 

DivideUnbalanced, Trailing functions such as trailing 12 months, and Allocations. 

When using GetDataBufferUsingFormula, FilterMembers and RemoveMembers are used

in conjunction to shrink down dimensional members in the source Data Buffer.

API Overview Guide 97

Unbalanced Math Functions



FilterMembers
FilterMembers change a data buffer and only include numbers for the specified

Dimensions. The first parameter is the starting data buffer. This can be a variable name or

an entire math equation in parentheses. There can be as many parameters as needed to

specify Member Filters and different Member Filters can be used for multiple Dimension

types. The resulting filtered data buffer will only contain numbers that match the Members

in the filters.

GetDataBufferUsingFormula Usage
Example using GetDataBufferUsingFormula in a working formula:

Example using GetDataBufferUsingFormula with FilterMembers and MultipleUnbalanced

in a working formula:

API Overview Guide 98

Unbalanced Math Functions


	Introduction
	Development Technologies
	Programming Language
	User Interface Technology
	Server Technology
	Database Technology

	Developer Fundamentals
	VB.Net and C#
	In-Solution Documentation
	Business Rules Editor Overview
	Helpful Resources
	VB.Net
	Microsoft VB.Net Learning
	Microsoft Visual Basic
	C#
	Microsoft C# Learning



	Platform Engines
	Workflow Engine
	Stage Engine
	Finance Engine
	Data Quality Engine
	Data Management Engine
	Presentation Engine
	BRApi

	API Structure and Organization
	Namespaces
	Namespaces Defined
	Namespace Hierarchy
	Microsoft Financial Calls
	In-Solution Development
	Custom Development
	Custom Web Development



	Using System Tools
	System Business Rules
	Database
	Tables
	Tools
	Data Records


	Event Listing
	Event Handler Business Rules
	Event Firing Sequences
	Clear Cube Data
	Clear Stage Data
	Execute Data Management
	Import Data Connection
	Import Excel File
	Import Text File
	Process Form
	Process Journal
	Process Workflow



	Finance Functions APIs
	Member ID
	Api.Pov.Time.MemberId
	Api.Pov.Time.MemberId Usage

	Api.Pov.Entity.MemberId
	Api.Pov.Entity.MemberId Usage

	Api.Pov.Account.MemberId
	Api.Pov.Account.MemberId Usage


	Dimension Primary Key - DimPk
	DimPK Usage

	Dimension Type Id
	DimTypeID Usage

	Data Unit Dimension POV
	Data Unit Dimension POV Usage

	Time Functions
	Api.Time.GetYearFromId
	Api.Time.GetPeriodNumFromId
	Api.Time.GetPeriodNumFromId Usage

	Api.Time.GetNumDaysInTimePeriod
	Api.Time.GetNumDaysInTimePeriod Usage

	Api.Time.AddTimePeriods
	Api.Time.AddTimePeriods Usage

	Api.Time.AddYears
	Api.Time.AddYears Usage


	Using Member Functions for Calculations
	GetMember
	GetMember Usage

	GetMemberId
	GetMemberID Usage

	GetBaseMembers
	GetBaseMembers Usage


	Writing Stored Calculations
	Overload Function
	Api.Data.Calculate Usage

	IsDurableCalculatedData
	IsCurableCalculatedData Usage

	Eval Function
	Eval Function Usage


	Summary
	Remove Functions
	RemoveZeros
	RemoveNoData
	Remove Functions Usage

	GetDataBuffer Functions
	GetDataBuffer Function
	GetDataBuffer Usage

	Unbalanced Math Functions
	Unbalanced Math Functions
	Unbalanced Math Functions Usage
	GetDataBufferUsingFormula Function
	FilterMembers
	GetDataBufferUsingFormula Usage



