
Smart Integration
Connector Guide

8.2.1 Release

Copyright © 2024 OneStream Software LLC. All rights reserved.

Any warranty with respect to the software or its functionality will be expressly given in the

Subscription License Agreement or Software License and Services Agreement between

OneStream and the warrantee. This document does not itself constitute a representation or

warranty with respect to the software or any related matter.

OneStream Software, OneStream, Extensible Dimensionality and the OneStream logo are

trademarks of OneStream Software LLC in the United States and other countries. Microsoft,

Microsoft Azure, Microsoft Office, Windows, Windows Server, Excel, .NET Framework,

Internet Information Services, Windows Communication Foundation and SQL Server are

registered trademarks or trademarks of Microsoft Corporation in the United States and/or

other countries. DevExpress is a registered trademark of Developer Express, Inc. Cisco is a

registered trademark of Cisco Systems, Inc. Intel is a trademark of Intel Corporation. AMD64

is a trademark of Advanced Micro Devices, Inc. Other names may be trademarks of their

respective owners.

Table of Contents
Revision History 1

About This Guide 4

Benefits 5

Common Understanding 5

OneStream Client Application Terms 6

OneStream Local Gateway Configuration Terms 7

Architecture 8

Additional Considerations 11

Requirements 12

OneStream Smart Integration Connector Environment Setup 12

Advanced Networking and Whitelisting 13

Upgrade Smart Integration Connector 14

Upgrade from 14

Migration from VPN Considerations 17

Setup and Installation 19

Smart Integration Connector Setup 19

Gateway Terms 20

Local Gateway Server Installation 23

Create a New Gateway 24

Smart Integration Connector Guide i

Table of Contents

Create a Database Connection 26

Create a Direct Connection 27

Export and Import the Gateway Configuration 30

New Gateway Key Generation 33

Create a Local Gateway Connection to a Data Source 34

Microsoft SQL Server 37

MySQL Data Provider 37

Oracle Database Examples 38

PostgreSQL (Npgsql Data Provider) 41

OleDb Data Provider 42

ODBC Data Provider 43

(Optional) Remove UserID and Passwords by Integrated
Security 44

Microsoft Entra Authentication 48

Test the Gateway 49

Restart OneStream Smart Integration Connector Gateway 51

Redundant and Fail-over Gateways 52

Create a Redundant or Fail-over Gateway 52

Define Custom Database Connections in OneStream System
Configuration Setup 54

Smart Integration Additional Settings 57

Smart Integration Connector Guide ii

Table of Contents

Local Application Data Settings 57

Referenced Assemblies Folder 58

Log Settings 61

Advanced Networking and Whitelisting 64

Whitelist the Azure Relay to your Firewall 64

Whitelist traffic to the Azure Relay 65

Use Smart Integration Connector 67

Examples 67

Data Adapters Example 67

SQL Table Editor Example 68

Grid View Example 69

Perform a Drill Back 70

Perform a Write Back 73

Support for sFTP 76

Transferring Files from Local FileShare 80

Step 1 - Setup the Remote Server / Remote Share 80

Step 2 - Pull file from Extender Business Rule 81

Step 3 - Automate from Data Management / Task Scheduler 84

Obtain Data through a WebAPI 85

Single WebAPI Connection 85

Smart Integration Connector Guide iii

Table of Contents

Multiple WebAPI Connections 89

Support for DLL Migration 90

Support for ERPConnect (SAP) 91

Business Rules 95

ExecRemoteGatewayRequest 96

ExecRemoteGatewayCachedBusinessRule 98

ExecRemoteGatewayJob 101

ExecRemoteGatewayBusinessRule 105

GetRemoteDataSourceConnection 110

GetRemoteGatewayJobStatus 112

GetSmartIntegrationConfigValue 114

GetGatewayConnectionInfo 116

Incompatible Business Rules 119

Troubleshooting 121

Error Log 121

Common Errors 122

Memory Issues 122

Parallel Processing 122

Gateway Version is empty 123

Custom Data Source Names 123

Smart Integration Connector Guide iv

Table of Contents

Array cannot be null Error 124

Opening and Saving Configuration Errors 124

Incorrect or Missing Library References 125

Script Error During Upgrade 126

Data Returned as a String 126

Manual Start and Stop 127

Remote Endpoint Not Found/Could Not Decrypt 128

Connections requiring a Signed Certificate 128

Trusted Certificate Chain 129

Gateway Unable to Connect 129

Communication Error 130

Smart Integration Connector Guide v

Table of Contents

Revision History
Date SIC Release Summary of Changes

17 Mar.
2024

8.2.0 Updated for release features, including the following

enhancements:

l Query results that contain NULL values are now

being returned.

l Added ability to mask the password when creating a

database connection string.

l Queries that run longer than 10 minutes will

consistently return data.

l Improved the reliability of multi-threaded

connections.

l SIC Local Gateway Configuration Utility will

automatically open the configuration file for non-

default install locations.

l DataTable / Datasets can now be sent via a Remote

Business Rule.

21 Nov.
2023

8.1.0 Updated to add WebAPI examples.

Smart Integration Connector Guide 1

Revision History

17 Nov.
2023

8.1.0 Updated for release features, including the following

enhancements:

l Customers can test their SIC Gateways during set-

up to ensure there is nothing blocking port 443.

l The default Referenced Assemblies folder is in

C:\Program Files\OneStream Software\OneStream

Gateway\Referenced Assemblies.

l The database connection strings in the OneStream

Local Gateway Configuration are encrypted when

saved.

l Specific IPs or CIDRs (a range of IPs) can be

whitelisted from the OneStream Windows Client

Application.

l The OneStream Local Gateway Configuration utility

automatically opens the configuration file for the

user.

21 Aug.
2023

8.0.0 With this release, Smart Integration Connector is a

General Availability feature.

Updated for release features, including the following

enhancements:

Smart Integration Connector Guide 2

Revision History

l The 2GB .NET limit and 1 million return rows is

increased to 5GB and 5 million return rows.

l Business rules decompress automatically.

Smart Integration Connector Guide 3

Revision History

About This Guide
This guide is intended for OneStream administrators and IT professionals. It describes how to

manage Smart Integration Connector to connect local data sources to your OneStream Cloud

instance. OneStream Cloud Operations and Support can assist with the tasks needed to set

up Smart Integration Connector:

l Installing or upgrading to OneStream platform version 8.2.

l Assisting with the installation of Smart Integration Connector Local Gateway Server in

your environment.

Smart Integration Connector Guide 4

About This Guide

Benefits
OneStream applications are strategic components in your financial environment. Data from

financial systems is imported to OneStream and contributes to financial closing and reporting

processes. While performing analysis, you leverage data lineage capabilities to make

contextual associations to data sources in your network.

You will need to set up and configure data sources that may be accessed by OneStream

processes. Traditionally, data connectivity between a OneStream Cloud instance and local

data sources is established using a Virtual Private Network (VPN) and all data source

credentials and supporting files are located on OneStream application servers.

The goals for Smart Integration Connector are to establish all required data source

connections without VPN and establish residency and management of data source

connections solely in your network.

With Smart Integration Connector, you can:

l Securely establish connectivity between OneStream Cloud and data sources in your

network without a VPN connection.

l Create and manage network data source integration using OneStream administration

interfaces.

l Locally manage database credentials and ancillary files.

Common Understanding
Use the reference charts below to understand common terms used throughout the product

and this document.

Smart Integration Connector Guide 5

Benefits

OneStream Client Application Terms

Term Definition

OneStreamWindows Application
client

TheWindows client facilitating user interface
access for all user personas to OneStream
applications.

OneStreamWindows Application
Server (App Server)

The application server executing all OneStream
business logic and processing.

Gateway Gateways define direct channels of integration
between the OneStream Cloud and a local
customer network. Gateways are represented by
a unique gateway key and are configured for
communication to an Azure Relay endpoint.
Gateways carry a 1:1 correlation to a local
gateway. The channel of communication
established from the OneStream gateway and a
local gateway created in Smart Integration
Connector.

Gateway Server A gateway server carries no unique technical
definition or configuration address. It is a node in
the tree control UI to organize gateways and
typically corresponds to an installed local gateway
server name.

Custom Database Connections Custom database connections define a named
data source to which OneStreammay connect
using Smart Integration Connector for the purpose
of data import, data export, or drill through
querying. The named custom database
connection is referenced in OneStream business
logic (data management objects or business rules)
to initiate data source connectivity. Credentials
and ancillary files required for a designated data
source connection are configured to and reside on
the corresponding local gateway server.

Smart Integration Connector Guide 6

Benefits

Direct Connection (for example, SFTP,
WebAPI)

A direct connection represents a point-to-point
channel to designated resources such as an sFTP
server or Web API (including iPaaS services). The
OneStream Local Gateway Server Configuration
Utility UI facilitates configuration of mapped
connections to resources where the on-premises
TCP port is mapped to a server (hostname/IP).

Database Connection A database connection represents the ultimate
datasource destination for Smart Integration
Connector. A local gateway connection may be a
designated database. The OneStream Local
Gateway Server Configuration Utility facilitates
configuration of required credentials and
supporting files. The identification of a local
gateway connection must correspond to a custom
database connection established to the
OneStream Application Server.

Whitelist (Whitelisting) Whitelisting provides the capability of providing

a list of IP addresses or namespaces that data

can flow through the Smart Integration

Connector. Whitelisting can be applied to the

Relay in the OneStream Windows Application

client and also applied to your firewall through

your IT Admin.

OneStream Local Gateway Configuration Terms

Term Definition

Local Gateway Server Smart Integration Connector requires a client
installation on Windows servers to establish a
local gateway server. The local gateway server

Smart Integration Connector Guide 7

Benefits

houses one or more local gateways which are
configured through the OneStream Local
Gateway Configuration.

Local Gateway Local gateways define the local customer
endpoint for distinct channels of communication
used by Smart Integration Connector. A local
gateway facilitates connections to local
databases, Web API connections, iPaaS servers,
or sFTP servers and corresponds 1:1 with a
gateway definition on the OneStream Application
Server. To ensure a valid connection, a local
gateway must be configured by importing the
corresponding gateway definition exported from
the OneStreamWindows Application client.

Local Gateway Connections Local gateway connections are the database
connections defined in the utility and confirm the
connection between the local gateway and the
local data sources.

OneStream Local Gateway
Configuration

This utility is where you configure the Local
Gateway Server, Local Gateways and Local
Gateway Connections to data sources.

Architecture
In contrast to a direct data source connection established using a VPN, Smart Integration

Connector makes an indirect connection to data sources. Smart Integration local gateways

integrate with on-premises customer environments through a cloud hosted service called

Azure Relay. The locally installed and configured local gateway server makes the direct

connection to data sources and responds to the OneStream application.

Smart Integration Connector Guide 8

Benefits

NOTE: In OneStream, Custom Database Server Connections define the

connection through the gateway to the data source.

The two primary services of Smart Integration Connector are:

l OneStream Application Server: The application server brokers communication

between the OneStream Cloud instance application and the Azure Relay service.

l Local Gateway Server: Instances of the Smart Integration Connector Local Gateway

Server are installed inside your network and configured to make direct connections to

designated data sources. The Smart Integration Connector Local Gateway Server runs

as a Windows service and brokers communication between local data sources and

Azure Relay using an outbound connection over port 443. All communication is

encrypted end to end through TLS.

The components of the Smart Integration Connector are:

Smart Integration Connector Guide 9

Benefits

l OneStream Windows Application client

Direct and Database connections (Gateways) configured through System >

Administration > Smart Integration Connector.

NOTE: The SmartIntegrationConnectorAdminPage role must be assigned

to a user for this to be visible.

l A Custom Database Connection to the local gateway data source. Custom Database

Connections are configured in System > System Configuration > Application Server

Configuration > Database Server Connections.

NOTE: The ManageSystemConfiguration role must be assigned to a user

for this to be visible.

l OneStream Smart Integration Connector Local Gateway Server

o Local Gateway Settings provide the connection information to establish the

gateway connection to the OneStream Windows Application. Gateway settings

are exported from the gateway settings in the OneStream Windows Application

and imported to the Local Gateway section of the OneStream Local Gateway

Configuration.

o Local Gateway Connections provide the setup information necessary for the

Smart Integration Connector Local Gateway to connect to local data sources.

Local Gateway Connections are set up through the OneStream Local Gateway

Configuration in the Gateway Connections Settings section.

Smart Integration Connector Guide 10

Benefits

Additional Considerations
l To provide high availability, there can be multiple instances of a designated local

gateway server, each running on a separate server bound to the same gateway where

the services run in an active / passive (fail over) manner.

l Multiple local gateways can be installed to establish global connectivity to data sources

in different subnetworks.

l Local gateway configuration must align to the corresponding gateway as defined in the

OneStream Windows application. An export process from the OneStream Windows

application gateway user interface can assist with the alignment to ensure

corresponding names and keys are identical.

Smart Integration Connector Guide 11

Benefits

Requirements
OneStream Smart Integration Connector
Environment Setup
Smart Integration Connector is Generally Available to all SaaS customers starting with

OneStream version 8.0.

l Install or upgrade OneStream to the latest version. See Setup and Installation.

l Work with your IT team to install the latest version of the Smart Integration Connector

Local Gateway Server in your environment.

o Windows Server 2019+

o .NET Framework 4.8

o Minimum of 8 GB of RAM

NOTE: Memory and processor requirements are driven by the

frequency and volume of remote data accessed through the gateway

service or if remote business rules / long running jobs are leveraged.

Typical data-access patterns with 1 million or less records being

queried at a time can be accomplished with 8-16 GB of RAM and two

newer generation processors. For queries returning over 1 million

records, 32 GB or more RAM is recommended.

Smart Integration Connector Guide 12

Requirements

o The installer requires administrative permission on the server to perform the

installation.

o See Smart Integration Connector Local Gateway Server Installation.

l Create a valid database connection string and internally test the connection from the

Windows server to the database. See Create a Database Connection for more

information.

l Be a OneStream administrator to configure corresponding data sources in the

OneStream environment.

Advanced Networking and Whitelisting
It is a best practice to filter and/or whitelist network traffic for the Smart Integration Connector,

you will need to work with your IT team to restrict this traffic. See Advanced Networking /

Whitelisting for more information. For any additional questions, please reach out to Customer

Support.

Smart Integration Connector Guide 13

Requirements

../../../../../../../Content/SIC/Setup and Installation.htm

Upgrade Smart Integration
Connector
The following section describes how to upgrade Smart Integration Connector.

Upgrade from
l Private Preview versions 7.2, 7.3,

l Limited Availability version 7.4, or

l General Availability versions 8.x to 8.2

This is only required if you are upgrading from 7.2, 7.3, 7.4, or 8.0, 8.1 to version 8.2. As part

of the upgrade, you can expect the following:

l A copy of the original configuration file from the prior version will be saved.

l Existing gateways should continue to function as they did prior to the install.

l If the Smart Integration Connector Windows Service is running, then the service will

automatically be started after install.

l Previous versions of Smart Integration Connector are compatible with newer versions of

OneStream. For example, the OneStream Local Gateway Server is compatible with

OneStream Platform version 8.2.x. However, it is best practice to upgrade to the

latest version of the OneStream Local Gateway Server.

If you perform an upgrade and have issues or do not achieve these results, contact

OneStream Support.

Smart Integration Connector Guide 14

Upgrade Smart Integration Connector

1. Install the latest version of OneStream. The latest version can be requested and

scheduled through the OneStream Software Cloud Customer Service Catalog. Make a

note in the details section of the ticket that you want to install and configure the Smart

Integration Connector.

2. Download the Smart Integration Connector install (OneStream_Connector_#.#.#.zip)

file from the Platform section of the Solution Exchange.

3. Extract the OneStreamSmartIntegrationConnectorGateway.msi from the downloaded

zip file.

4. Back up a copy of your configuration folder and sub folders before upgrading. Default is:

C:\Program Files\OneStream Software\OneStream Gateway\.

5. Follow the steps in Setup and Installation to complete your upgrade.

If the Smart Integration Connector Windows Service was configured to start using a custom

service account prior to upgrading, confirm that the service is set to start using the correct

service account after the upgrade is completed.

NOTE: For OneStream Local Gateway Server version 8.1 and above, the new

default location for Reference Assembly Folder is C:\Program Files\OneStream

Software\OneStream Gateway\Referenced Assemblies.

Smart Integration Connector Guide 15

Upgrade Smart Integration Connector

https://onestreamsoftware.service-now.com/sp_cloud?id=sc_category&sys_id=23e2971edbf9501039a0d6fa4b961931&catalog_id=-1&spa=1
https://solutionexchange.onestream.com/dashboard/home/browse

Prior to v8.0, it was required that a OneStream Business Rule developer invoking a remote

Smart Integration Function be aware of the data type returned and convert accordingly after

the result is returned.

Example: An example where the returned result was a byte array

involved code that appeared as follows:

bytesFromFile = CompressionHelper.InflateJsonObject(Of System.Byte())
(si,objRemoteRequestResultDto.resultDataCompressed)

The Smart Integration Connector Gateway now provides this type of information back to

OneStream and streamlines this conversion process using a newly added property called

ObjectResultValue, which is populated.

When invoking the same operation shown above that previously required the type to be

converted, a BR developer can do the following:

bytesFromFile = objRemoteRequestResultDto.ObjectResultValue

Smart Integration Connector Guide 16

Upgrade Smart Integration Connector

Migration from VPN
Considerations
If you are migrating from a VPN solution to Smart Integration Connector, there are items to

take into consideration. Use the checklist below to prepare yourself for migrating from VPN to

Smart Integration Connector.

NOTE: While migrating, a VPN and Smart Integration Connector can be used in

tandem. This allows for A/B testing and validation prior to disconnecting the VPN

tunnel.

Checklist Item Complete

Check if your VPN connection is used for securing authentication paths

to OneStream. SIC is not providing this capability, however other

considerations such as whitelisting IP access are options see Modify

Inbound Client Access Rules.

□

Determine how many VPN connections exist. If OneStream is

integrating with data sources from multiple subnetworks, you may have

multiple VPN connections. This configuration can be managed with

multiple Local Gateway Servers.

□

Smart Integration Connector Guide 17

Migration from VPN Considerations

https://onestreamsoftware.service-now.com/sp_internal?id=sc_cat_item&table=sc_cat_item&sys_id=9e4c18c81b156d100020a935604bcb7f
https://onestreamsoftware.service-now.com/sp_internal?id=sc_cat_item&table=sc_cat_item&sys_id=9e4c18c81b156d100020a935604bcb7f

Smart Integration Connector requires the installation and operation of a

Local Gateway Service . Make sure you have identified a Virtual

Machine or physical server to operate the Local Gateway Server. See

Requirements.

□

Take inventory of what you currently use for example, business rules,
dashboards, queries, grid views, drill-backs, and whitelisted endpoints for
each plan for any updates needed when using Smart Integration
Connector.

□

Set up a time with your OneStream Cloud Support Representative to plan
when the VPN can be disconnected.

□

Smart Integration Connector Guide 18

Migration from VPN Considerations

Setup and Installation
Smart Integration Connector Setup
You must set up Smart Integration Connector in this order:

1. Install the OneStream Smart Integration Connector Local Gateway Server

(OneStreamSmartIntegrationConnectorGateway.msi) on a Windows Server 2019+ in

your environment.

2. Create a gateway in the OneStream Windows application to connect OneStream Cloud

instance to a Local Gateway.

3. Export the gateway configuration and import this configuration to the Gateway Settings

in the OneStream Local Gateway Configuration.

4. For Database Connection gateways, to allow connections to local databases:

a. Define a Local Gateway connection including Data Sources through the

OneStream Local Gateway Configuration.

b. Test any configured Data Sources to confirm they are communicating properly.

NOTE: Testing direct connections may involve building test business

rules to perform proper validation.

c. Define a custom database connection in the OneStream System Configuration

Setup.

Smart Integration Connector Guide 19

Setup and Installation

When installation is complete, you can access remote data sources using business rules,

member formulas, or dashboard data adapters in OneStream through the Smart Integration

Connector.

Gateway Terms
The Smart Integration fields define the gateway. You can find more information about this

below.

Relay Name Refers to the internal namespace of the relay service
that is responsible for managing the data flow for all
defined Gateways. For example, arn-
mysite.servicebus.windows.net.

IPv4 Whitelist Contains the list of IPs or CIDR addresses that are
allowed to transfer data through Smart Integration
Connector.

Name The name of the gateway. Gateway names are

completely arbitrary and typically refer to the region

(North East) or data source such as (SAP).

NOTE: The gateway name cannot be

changed once created, and they must be

unique across all environments—both

development and production. You can delete

an existing gateway and recreate it with a

new name.

Description Text describing the role and purpose for the gateway
and the data sources to which it is connecting.

Smart Integration Connector Guide 20

Setup and Installation

Gateway Server Name This is the name of the gateway server associated
with the gateway. You can select an existing gateway
server or enter a new one.

Web API Key
(Database Connections only)

This is an editable field. You can change your key as
needed. If changed, it must also be changed in the
Smart Integration Connector Local Gateway Server.
It is designed to offer an additional layer of protection
within your network when invoking APIs embedded in
the Smart Integration Connector Local Gateway
Server. The purpose of the Web API Key is to give
you full control on who can access the data sources in
your network.

Gateway Key This is the cloud key used to authenticate the Smart
Integration Connector gateway to the customer
OneStream environment. This key can be rotated in
the OneStream application by Smart Integration
Connector Gateway administrators and must be the
same in both the remote Gateway service and in
OneStream.

Status Value will be Online if the local gateway is running
and returning heartbeat messages back to
OneStream. If the Smart Integration Connector Local
Gateway Server is unavailable, stopped, or network
connectivity is interrupted, it will display Offline.

Status Indicators Status indicators give a visual notification based on

the Gateway status. An indicator turns green on the

side menu if the Gateway is Online, red if the

Gateway is Offline, and yellow if the Gateway is

Online but there is a newer version of the Local

Gateway Server available.

Smart Integration Connector Guide 21

Setup and Installation

For Direct Connections, the yellow status will

never display as these connections do not report a

version number back to OneStream.

Instance Count Displays the count of active gateways. Grayed out by
default. While this value is typically 1 when the
gateway is online, you may have a listener count of
two or more if there are redundant active gateways
for high availability. By default, OneStream allows a
total of five active gateways per environment. This
can be increased by contacting Support.

Version

(Database Connections Only)

Displays the Smart Integration Connector Local
Gateway Server version. This version may be
different from the deployed version of OneStream
and allows administrators to observe and monitor
versions of Smart Integration Connector Gateway
software deployed.

Bound Port at Gateway Remote port bound to Gateway endpoint.

Database Connection Gateways default to 20433 and
should not be changed without consulting support.

Direct Connection Gateways allow any port running
on a remote host to be used. This port represents the
well-known TCP service to expose from an on-
premises host such as sFTP, which would equate to
port 22.

Remote Gateway Host

(Direct Connections Only)

Remote port host to Gateway Server. Used if
surfacing an endpoint such as an SFTP Server. This
could be the hostname or IP address on the network
that the Gateway Server resides in. For example:
172.168.4.7 or sftp.mycompany.com

Bound Port in OneStream This is an customer defined port that can be

Smart Integration Connector Guide 22

Setup and Installation

(Direct Connections Only) referenced in data management or business rules to
directly access services such as sFTP andWebAPI.
This must be a globally unique port in a OneStream
deployment environment per direct connection and
should be a TCP port number > 1024 and <65535.
When creating the gateway, use the default of -1 and
OneStream will automatically assign an open port.

Gateway failures reporting interval
(min)

Minutes to wait between reporting gateway failures
into the OneStream Error Log. The default is five
minutes and the max is 1440 minutes. If a gateway is
unreachable, an item is put in the error log using this
interval value in minutes and the minutes can be
adjusted.

Local Gateway Server Installation
Smart Integration Connector is available in OneStream from the System > Administration

tab.

1. Download the Smart Integration Connector installer (OneStream_Connector_#.#.#.zip)

file from the Platform section of the Solution Exchange.

2. Copy the Smart Integration Connector Local Gateway Server installer to a Windows

Server within your environment.

Smart Integration Connector Guide 23

Setup and Installation

https://solutionexchange.onestream.com/dashboard/home/browse

3. Run the installer as an administrator. Accept all the default prompts. When completed,

the Local Gateway Server will be installed on your Windows Server.

IMPORTANT: If you are upgrading, you must follow steps 4-7.

4. Run the OneStream Local Gateway Configuration Utility.

5. The XFGatewayConfiguration.xml file will open by default.

IMPORTANT: Do not change the name of the

XFGatewayConfiguration.xml file. The OneStream Smart Integration

Connector Gateway Service only references this

XFGatewayConfiguration.xml file upon start-up. The Save As functionality

is used to create a backup of the file. Do not rename, move, or change the

location of the XFGatewayConfiguration.xml file.

6. Save the configuration file.

7. Follow the dialog prompts and restart the service.

Create a New Gateway
Gateways are used to connect OneStream to the Smart Integration Connector Local Gateway

Server over the Azure Relay. You will establish whether the gateway is a direct or database

connection. After the gateway is created, you will need to copy the configuration to the Smart

Integration Connector Local Gateway Server using the OneStream Local Gateway

Configuration.

Smart Integration Connector Guide 24

Setup and Installation

1. Go to System > Administration > Smart Integration Connector.

2. Click Create New Gateway.

3. Enter the Name and Description. For descriptions of the fields in steps 3-5, see

Gateway Information section.

NOTE: The Gateway name cannot be changed once created and must be

deleted and re-created.

4. Select the Gateway Server from the drop-down, or enter a new Gateway Server name

in the same field.

5. From Connection Type, select Database Connection or Direct Connection. You will

have to enter different information depending on the connection type.

Smart Integration Connector Guide 25

Setup and Installation

Create a Database Connection
A database connection is used to connect to relational databases, such as SQL Server or

MySQL, using ODBC, OleDB, or .NET drivers and is also necessary for remote Smart

Integration Functions to run. It is recommended to have at least one database connection

endpoint per Gateway Server even if relational databases will not be accessed by OneStream.

The Local Gateway Configuration Utility facilitates the configuration of required credentials for

the associated local gateway. The identification of a local gateway connection must

correspond to a custom database connection established to the OneStream Application

Server.

After you create a new gateway, you can complete the database connection by following these

steps:

1. From Connection Type, select Database Connection. For descriptions of the fields in

steps 1 and 2, see Gateway Information section.

Smart Integration Connector Guide 26

Setup and Installation

2. Enter a Web API Key.

NOTE: The Web API Key is used as an additional layer of security when

communicating with the Smart Integration Connector Local Gateway Server

internal APIs. WebAPI keys are not required, but are best practice to enhance

security and can be modified or added at any time. The Local Gateway Service

introduces a WebAPI exposed only to OneStream and bound only to localhost

on the server it is deployed to. This WebAPI is inaccessible on the remote

network. If the Local Gateway Service is bound to other network interfaces, it is

suggested to use the WebAPI as a mechanism to enhance security on the

remote network preventing unauthorized use of OneStream WebAPIs.

Create a Direct Connection
A gateway direct connection represents a point-to-point channel to specific remote network

resources such as an sFTP server or Web API (including iPaaS services).

Smart Integration Connector Guide 27

Setup and Installation

NOTE: It is required to have at least one database connection to use a Direct

Connection because the database connection is used to monitor the availability

of the remote Smart Integration Connector Gateway server.

The existence of a database connection does not necessarily mean it must be

used or configured if only Direct Connections are desired.

After you create a new gateway, you can configure the direct connection by following these

steps:

1. From Connection Type, select Direct Connection (e.g, SFTP, WebAPI). For

descriptions of the fields in steps 1-4, see Gateway Information section.

2. Enter the Bound Port at Gateway. This port represents the well-known TCP service to

expose from an on-premises host such as sFTP, which would equate to port 22.

NOTE: The remote service port is required to configure the connection and

may require consultation with network or IT resources to obtain it. It is also

required that any firewalls between the Local Gateway Server and the

remote host allow traffic to the destination port specified.

3. Enter the Remote Gateway Host (for example, localhost). This represents the remote

host name or IP address accessible by the OneStream Smart Integration Connector

Local Gateway Server. If the host or IP address is accessible or resolvable from the

OneStream Smart Integration Connector Gateway service or using remote resources

accessible through on-premises WAN, it can be exposed for use.

Smart Integration Connector Guide 28

Setup and Installation

4. Enter a Bound Port in OneStream. It is a best practice to use -1 for this value as the

OneStream application servers will locate an unused and available port to map to this

connection. This port number must be globally unique across all application servers in a

OneStream deployment, and care should be taken if a port is specified. This is the port

that is used to access the remote host through business rules and data management

jobs from OneStream application servers to allow network traffic to traverse to the

remote host and port.

5. Using this direct connection in OneStream is done by accessing localhost: [Bound Port

In OneStream] which will tunnel traffic back to the configured remote Gateway Host to

the configured bound port at gateway.

a. Example: Remote sFTP server at 172.168.3.4 listening on port 22.

b. Bound Port in OneStream is configured as port 45000. Note that when -1 is used,

the selected port number is available/displayed after saving and also surfaced in

the OneStream Error Log.

c. In OneStream Business Rules, you can access the remote host by connecting to

localhost:45000.

d. In a OneStream Business Rule, this port can also be obtained in code allowing

this port number to be changed without updating Business Rules:

Dim gatewayDetails As GatewayDetails = BRApi.Utilities.GetGatewayConnectionInfo(si,
"northamerica_sftp")
Dim remotePort = gatewayDetails.OneStreamPortNumber

Smart Integration Connector Guide 29

Setup and Installation

Export and Import the Gateway
Configuration
You must copy the gateway configuration settings and paste them into your Smart Integration

Connector Gateway to establish the connection.

1. Go to System > Administration > Smart Integration Connector.

2. Select the Gateway to export.

3. Click Export Gateway Configuration. The Gateway Configuration Details are

copied to the clipboard.

Smart Integration Connector Guide 30

Setup and Installation

4. On your Windows Server, open the OneStream Local Gateway Configuration. This

runs as administrator by default.

5. The existing XFGatewayConfiguration.xml opens by default.

6. Click next to Local Gateway Settings.

7. Click next to Local Gateways.

Smart Integration Connector Guide 31

Setup and Installation

8. Import the previously copied Gateway Configuration.

9. Click Apply.

10. Click Test Connection to test the connection.

Smart Integration Connector Guide 32

Setup and Installation

11. Click OK twice.

12. Save the configuration.

13. Click Yes to apply the changes and restart the Local Gateway Server.

New Gateway Key Generation
Smart Integration Connector administrators can rotate the Gateway Key maintained by the

underlying cloud service; however, it must be the same for both the Smart Integration

Connector local gateway and the gateway configuration in the OneStream Windows

Application to function properly.

1. Select an existing gateway.

2. Click Regenerate Gateway Key for Selected Gateway.

Smart Integration Connector Guide 33

Setup and Installation

3. You must re-export your Gateway Configuration and apply the new settings throughout

the OneStream Local Gateway Configuration.

4. Click OK.

Create a Local Gateway Connection to a
Data Source
A data source contains the name, connection string, and database provider for the database

of your choice. You can set up a PostgreSQL, SQL, Oracle, OleDb, MySQL, ODP.net, or

Microsoft ODBC connection. The data source is configured using the Local Gateway

Configuration Utility. The utility was installed as part of the Smart Integration Connector Local

Gateway installation.

1. Start the OneStream Local Gateway Configuration.

2. The existing XFGatewayConfiguration.xml opens by default.

3. Click to configure Local Gateway Connections details to set up the Data Sources

to local databases, APIs, or other on-premises resources.

Smart Integration Connector Guide 34

Setup and Installation

4. Click next to Data Sources.

5. Click Add Item to add a new data source.

Smart Integration Connector Guide 35

Setup and Installation

6. If you have a password for the connection string, enter it in the Connection String

Password field. The password is masked for security. Then, when you need to enter

your connection string password, use the substitution variable: |password|

Example:

Data Source=localhost;Initial Catalog=Sales_DB;Persist Security Info=True;User

ID=sa;Password=|password|;

7. Enter the Data Source Name, Connection String, and select a Database Provider.

NOTE: For security purposes, we recommend using the Connection String

Password field and the substitution variable to ensure the password is not

shown on screen. However, you can also embed the password directly

within your connection string. For example: Server =

localhost;Port=3306;uid=root;pwd=my_

password;database=gatewaymysql;

You can add as many data sources as necessary. The Data Source Name must be

unique for each connection defined within a specific OneStream Smart Integration

Connector Local Gateway Server. Names can be re-used across deployed instances of

the Windows Service across your network. See the examples below for connection

string examples to a variety of relational data sources such as PostgreSQL, SQL, and

ODBC, and Oracle. Connection Strings are encrypted automatically. You can edit the

plain text string by clicking the ellipsis.

NOTE: Oracle databases require drivers and specific configuration provided by

Oracle.

8. Click OK to save your configuration.

Smart Integration Connector Guide 36

Setup and Installation

IMPORTANT: The connection strings below include user IDs and the password

substitution variable. You can also use integrated security to remove plain text

user IDs and passwords from connection strings in Smart Integration Connector.

See Remove UserID and Passwords by Integrated Security.

Microsoft SQL Server
Below is an example for setting up a SQL database using the SqlClient provider.

1. Click next to Data Sources.

2. Click Add Item to add the data source.

3. Data Source Name: Northeast_Sales

4. Connection String:

with UserID / Password: Data Source=localhost;Initial Catalog=Sales_DB;Persist

Security Info=True;User ID=sa;Password=|password|;Max Pool Size=1000;Connect

Timeout=60; using Integrated Security: Data Source=localhost;Initial Catalog=Sales_

DB;Trusted_Connection=True;

5. From Database Provider, select SqlClient Data Provider.

6. Click Test Connection to test the data source.

7. Click OK to save.

MySQL Data Provider
Below is an example for setting up a MySQL Data Provider.

Smart Integration Connector Guide 37

Setup and Installation

1. Click next to Data Sources.

2. Click Add Item to add a new data source.

3. Data Source Name: Sales_UK

4. Connection String: Server =

localhost;Port=3306;uid=root;pwd=|password|;database=gatewaymysql;

5. From Database Provider, select MySQL Data Provider.

6. Click Test Connection to test the data source.

7. Click OK to save.

Oracle Database Examples
Connecting to Oracle requires the download and configuration of the Oracle Data Access

Components (ODAC) obtained directly from Oracle’s website. Follow the steps below to get

access to these drivers and files.

1. Go to the latest web page for Oracle .NET and Visual Studio ODAC Downloads for

Oracle Database.

2. After installation, the ODP.NET Provider will display as an available Database Provider

in the utility when adding a new data source.

Smart Integration Connector Guide 38

Setup and Installation

https://www.oracle.com/database/technologies/net-downloads.html
https://www.oracle.com/database/technologies/net-downloads.html

3. The connection string for Oracle databases can be set up to either reference or require

a locally defined tnsnames.ora file for the requested data sources.

Example Connection Strings:

l Oracle Data Provider for .NET: Data Source=oracletest;User

Id=OneStream1;Password=|password|;

l Oracle Data Provider without TNSNames.ora: Data Source=(DESCRIPTION=

(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=MyHost)(PORT=MyPort)))

(CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=MyOracleSID))); User

Id=myUsername;Password=|password|;

OracleClient Database Provider

Below is an example for setting up a OracleClient database provider.

Smart Integration Connector Guide 39

Setup and Installation

1. Click next to Data Sources.

2. Click Add Item to add the data source.

3. Data Source Name: Sales_EMEA

4. Connection String: Data Source=oracletest;User

Id=OneStream1;Password=|password|

5. From Database Provider, select OracleClient Data Provider.

6. Click Test Connection to test the data source.

7. Click OK to save.

Oracle Data Provider for .NET

Below is an example for setting up a Oracle Data Provider for .NET.

1. Click next to Data Sources.

2. Data Source Name: Sales_SouthAmerica

3. Connection String: Data Source=oracletest;User

Id=OneStream1;Password=|password|

4. From Database Provider, select Oracle Data Provider for .NET.

Smart Integration Connector Guide 40

Setup and Installation

5. Click Add Item to add a new data source.

6. Click Test Connection to test the data source.

7. Click OK to save.

PostgreSQL (Npgsql Data Provider)
Below is an example for setting up a PostGres database.

1. Click next to Data Sources.

2. Click Add Item to add the data source.

3. Data Source Name: RevenueMgmtPostGres

4. Connection String: Server=localhost;Port=5432;Database=revmgt;User

Id=onestream;Password=|password|;

5. From Database Provider, select Npgsql Data Provider.

6. Click Test Connection to test the data source.

7. Click OK to save.

Smart Integration Connector Guide 41

Setup and Installation

OleDb Data Provider
Below is an example for setting up an Oracle database. This does not require additional

download and configurations.

1. Click next to Data Sources.

2. Click Add Item to add the data source.

3. Data Source Name: Sales_Asia

4. Connection String: Provider=OraOLEDB.Oracle;Data

Source=localhost:1521/XE;Initial Catalog=myDataBase;User

Id=myUsername;Password=|password|;

5. From Database Provider, select OleDb Data Provider.

6. Click Test Connection to test the data source.

7. Click OK to save.

Smart Integration Connector Guide 42

Setup and Installation

ODBC Data Provider
Below is an example for setting up a ODBC data source for Oracle.

1. Click next to Data Sources.

2. Click Add Item to add the data source.

3. Data Source Name: Sales_Europe

4. Connection String: Driver={Microsoft ODBC for Oracle};Server=(DESCRIPTION=

(ADDRESS=(PROTOCOL=TCP)(HOST=199.199.199.199)(PORT=1523))(CONNECT_

DATA=(SID=dbName)));Uid=myUsername;Pwd=|password|;

5. From Database Provider , select Odbc Data Provider.

6. Click Test Connection to test the data source.

7. Click OK to create the new source.

8. Click Save.

Smart Integration Connector Guide 43

Setup and Installation

(Optional) Remove UserID and Passwords by
Integrated Security
You can remove plain text UserIDs and Passwords from connection strings in Smart

Integration Connector if your organization has concerns over credential storage in the Smart

Integration Connector Gateway configuration file. This requires running the Windows Service

under a Service Account identity and using integrated security to connect to remote data

sources, which eliminates local storage of any plain text credentials. Additionally, ODBC data

sources can be defined (using a system DNS) to remove credentials from the configuration

file.

Update the Local Gateway Connection String

1. Open your OneStream Local Gateway Configuration.

2. Open a Local Gateway Connection.

3. Navigate to the Connection String and use an Integrated or Trusted Security string. For

example: Data Source=localhost,Initial Catalog=OneStream_GolfStreamDemo_

2022;Trusted_Connection=True;

Smart Integration Connector Guide 44

Setup and Installation

NOTE: Trusted Connections use the UserID and password you use to log

into the Windows Server.

NOTE: The example above is for SQL server. Trusted connections vary by

Data Provider type.

4. Click OK.

5. Save your Data Source.

Update Permissions on the Service

Next, you need to update the service to run as the user. If the service is not updated, the

connection does not update and errors will occur.

Smart Integration Connector Guide 45

Setup and Installation

1. Open Windows Services.

2. Navigate to OneStream Smart Integration Connector Gateway. The service should

be running.

3. Right-click and open Properties.

4. Click the Log On tab. Typically, this will default to the Local System account.

IMPORTANT: Before moving to the next step, ensure that you have the

appropriate permissions and approvals from your IT Administrators to

complete the Log On change. The service account used will require local

Administrative rights to access resources on the Windows server, such as

the machine certificate store and private keys used for encryption. This

account will also require the appropriate permissions to access the

database such as Microsoft SQL Server.

Smart Integration Connector Guide 46

Setup and Installation

5. Change log on from Local System account to This account and enter your domain or

login that has access to the data source. Depending on how your SSO is configured,

your account could require your domain name, UserID, and password. Contact your IT

Administrator if you have questions about your account domain.

6. Click Apply.

7. Click OK.

8. Right-click and select Restart to restart and update the service.

Smart Integration Connector Guide 47

Setup and Installation

Test the Updated Integrated Connection String

You should test your connection through a Data Adapter query to verify your access to Smart

Integration Connector. An alternate SQL Query to pulling the first 10-50 rows is sufficient. See

Data Adapters Example.

Microsoft Entra Authentication
The ability to use Microsoft Entra using service principal authentication to access Azure SQL

is supported.

1. Open your OneStream Local Gateway Configuration.

2. Open a Local Gateway Connection.

3. Enter a Data Source Name of MicrosoftEntra.

4. Navigate to the Connection String and enter a connection string. Example:

Server=demo.database.windows.net; Authentication=Active Directory Service

Principal; Encrypt=True; Database=testdb; User Id=AppId; Password=|password|;

5. Select MS Data SQL Provider as your Database Provider.

Smart Integration Connector Guide 48

Setup and Installation

6. Click OK.

7. Click Save.

Test the Gateway
1. You can test the gateway by double-clicking the OneStreamGatewayService.exe file

located in the installation folder.

NOTE: The Smart Integration Connector Gateway Windows Service must

be in a stopped state to run in the console for test purposes.

The following command window is displayed:

2. Correct any errors that are displayed in the command window.

NOTE: If the command window output does not proceed beyond the

"APIServiceHostController Start Relay API startup successful." line, this

indicates that the outbound traffic over port 443 to the Azure Relay is

blocked. Open the port to resolve this issue.

Smart Integration Connector Guide 49

Setup and Installation

3. In the OneStream Windows Application client, refresh Gateway Details from System >

Administration > Smart Integration Connector > Your gateway.

l The Instance Count changes from 0 to 1.

l The Status changes from Offline to Online. Additionally, status indicators turn

green on the side menu if the Gateway is Online, red if the Gateway is Offline,

and yellow if the Gateway is Offline but there is a newer version of the Local

Gateway Server available. See the second screenshot under this step for a close-

up of the indicators.

l The Version field shows the version of the running Smart Integration Connector

Gateway.

4. Press Enter twice on the keyboard to stop the service in the command window and then

close the command window.

Smart Integration Connector Guide 50

Setup and Installation

Restart OneStream Smart Integration
Connector Gateway
After communication has been verified, the following Windows Service needs to run to

maintain communication with the OneStream Cloud instance. By default, these services are

set to start after a Windows reboot. You can also manually start them using the Windows

Service control manager or the command line using the net start/net stop commands. If you

are having issues restarting the service, see Troubleshooting.

1. Open the OneStream Local Gateway Configuration.

2. Click Tools > Restart OneStream Smart Integration Connector Gateway.

Smart Integration Connector Guide 51

Setup and Installation

../../../../../../../Content/SIC/Troubleshooting.htm

Redundant and Fail-over Gateways

The Smart Integration Connector Local Gateway Server can be installed on a separate

Windows Server to operate as a fail-over. The Local Gateway Server Gateway establishes

connection to the Relay that becomes the ac/primary Local Gateway Server instance while the

second Local Gateway Server environment remains idle until the primary goes offline. The

second Local Gateway Server Gateway would be the fail-over in this scenario and

automatically accept traffic if the primary server instance were to go offline. See Create a

Redundant or Fail-over Gateway.

Create a Redundant or Fail-over Gateway
To create a redundant or fail-over gateway, you must set up Smart Integration Connector in

this order:

1. Complete installation on the primary Local Gateway Server and verify all data

connections transfer data.

Smart Integration Connector Guide 52

Setup and Installation

2. On the secondary server, install the OneStream Smart Integration Connector Local

Gateway Server (OneStreamSmartIntegrationConnectorGateway.msi) on a Windows

Server 2019+ in your environment.

3. Copy the existing Gateway configuration from the primary server to the secondary

server. The Gateway Server configuration file XFGatewayConfiguration.XML is located

C:\Program Files\OneStream Software\OneStream Gateway\App_Data.

NOTE: If you are using custom DLLs, SAP, or referenced DLLs, you must

copy the existing Referenced Assemblies Folder. Locations must be in

sync and in the same primary server. See Smart Integration Connector

Settings.

4. On the secondary server, perform the following steps:

a. Open the OneStream Local Gateway Configuration.

b. Since the Data Source Connection Strings are encrypted, you will need to re-enter

the connection string for each Data Source.

a. Click Tools > Local Gateway Connections > Data Sources.

b. Select a Data Source and the Connection String.

c. Select OK to provide a new connection string.

d. Delete the encrypted text and replace it with a valid connection string from

the primary server.

e. Select OK to encrypt the connection string and close the dialog box.

Smart Integration Connector Guide 53

Setup and Installation

f. Repeat steps a through f for all the remaining data sources.

g. Click OK to close the Data Sources.

h. Click OK to close the Local Gateway Connections.

i. Click Save to save the Local Gateway Configuration.

j. Click Yes to restart the service.

5. Verify the Instance Count is 2 when both the primary and secondary servers are

running in the OneStream Windows App.

Define Custom Database Connections in
OneStream System Configuration Setup
Now that the gateway is set up and communicating with the Smart Integration Connector

Gateway, the final step is to set up the location of the remote data source in OneStream. To

continue adding the Custom Database Connection, you must assign a user to the

ManageSystemConfiguration role.

Smart Integration Connector Guide 54

Setup and Installation

1. Go to System > Administration > System Configuration.

2. Select Application Server Configuration > Database Server Connections.

3. Select Create Item to create a new Custom database server connection.

NOTE: If the only fields displayed are Name and External Database

properties, verify that the current user is assigned to the

ManageSystemConfiguration role.

4. Enter the Name of the Database Server Connection.

5. For Database Provider Type, select Gateway.

Smart Integration Connector Guide 55

Setup and Installation

6. The Gateway Name drop-down menu will be populated with a list of configured

Gateways. Select the Gateway.

7. After the Gateway is selected, the Data Source Name drop-down menu populates with

a list of the Local Gateway Server Database Connections.

8. Select a Database Connection from the drop-down menu.

NOTE: If the remote data source is not displayed or the Gateway is offline,

you can select Custom to allow the data source to be manually specified.

9. Click Save to complete the configuration.

10. Verify the custom database connection is under Custom.

Smart Integration Connector Guide 56

Setup and Installation

Smart Integration Additional Settings
Local Application Data Settings
Additional application configurations can be applied within the Local Application Data

Settings.

Once you open a configuration file within the utility, open Local Application Data Settings.

You can:

l Reference a location to additional DLLs that will be used in remote business rules.

l Adjust the number of records returned. These are optional and are only defined if

needed or if further tuning is necessary by a consultant or as instructed by Support.

l Store Configuration Parameters and associated values.

Smart Integration Connector Guide 57

Referenced Assemblies Folder
The Referenced Assemblies Folder specifies the location of customer-supplied DLLs that can

be referenced when remote Smart Integration Functions are compiled and executed. You will

need to add the DLL name to the Smart Integration Functions Referenced Assemblies

property. The default value is C:\Program Files\OneStream Software\OneStream

Gateway\Referenced Assemblies.

NOTE: If you are integrating with SAP, according to OneStream Platform

version 8.0 and above, ERPConnect45.dll is not included by default.

ERPConnect and supporting DLLs will need to be added to your Referenced

Assemblies Folder. Refer to Support for SAP Integration .

Record Count Adjustments

Maximum Records to Return when Paging

Defaults to 1000000 and defines the number of rows to return per page/block to OneStream

APIs. This value is used only when greater than the "Row Count to Begin Paging Operations"

rows are returned from a query. Example: If the query returns 3 million rows and Row Count to

Begin Paging is set to 1 million, there would be 3 blocks of 1 million rows returned to

OneStream.

NOTE: Maximum Records to Return when Paging, Maximum Records to

Return, and Row Count to Begin Paging Operations are optional and should

only be applied by a OneStream consultant or OneStream Support.

Maximum Records to Return

Smart Integration Connector Guide 58

Defaults to 5000000 and is the maximum number of rows that can be returned from any one

query.

The maximum recommended number of records to return is 5 million and is the default.

Additional RAM/CPU resources would be required on the Smart Integration Connector

Gateway Server and on the remote database server to surface large quantities of data. If this

limit is exceeded, you will receive a "Smart Integration Connector Remote Query" error.

NOTE: Maximum Records and Row Counts Settings: When large data volumes

are returned (over 1000000 rows), to maintain performance and reliability,

Smart Integration Connector automatically transfers the data in pages.

NOTE: Smart Integration Connector has a threshold limit of 5 million rows and

5GB.

NOTE: It is a best practice that you review any queries that return more than 1

million rows with your Database Administrator, because additional tuning may

be required. Tuning these queries will improve performance, reduce resource

usage, and make them more efficient.

Smart Integration Connector Guide 59

Row Count to Begin Paging Operations

Defaults to 1000000 and is the number of rows returned before the dataset is returned through

pages/blocks.

Local Configuration Parameters

This is where you can set key value pairs, such as Web API keys, usernames, and passwords,

that can be referenced from business rules. These key value pairs are defined as

Configuration Parameter Name and Configuration Parameter Value.

For example, the Configuration Parameter Name is sftpPassword. Sensitive information,

such as the password, is stored in the Configuration Parameter Value on the Local Gateway

Server and does not need to be stored in the OneStream Windows Application.

Then, in a business rule, you can reference the Configuration Parameter Name and do not

need to know the password or other sensitive information that is stored in the Configuration

Parameter Value. For example, in the following business rule the sftpPassword Configuration

Parameter Name is referenced. The GetSmartIntegrationConfigValue API can be used in a

Smart Integration Function to reference the Configuration Parameter Name, which may be

needed in a business rule to access a local data source.

Smart Integration Connector Guide 60

Log Settings
The service uses Serilog for application-level logging and exposes options for controlling

naming convention, growth limits, and retention details. For example you can change the

verbosity of log messages by changing theminimum-level setting from Verbose to

Informational. If a catastrophic error happens, you can check the Windows event logs to

review the errors. You can edit the Log Settings from the OneStream Local Gateway

Configuration Utility.

Click to access Log Settings.

Smart Integration Connector Guide 61

l Log Level descriptions:

o Verbose: The noisiest level, rarely (if ever) enabled for a production application.

o Debug: Used for internal system events that are not necessarily observable from

the outside, but useful when determining how something happened.

o Information: Used to describe things happening in the system that correspond to

its responsibilities and functions. Generally, these are the observable actions the

system can perform. This is recommended for production environments.

o Warning: Service is degraded, endangered, or may be behaving outside of its

expected parameters.

o Error: Logging of situations where functionality is unavailable or a recoverable

error condition occurred.

o Fatal: Only the most critical level items would be logged, requiring immediate

attention.

l File Size Limit in Bytes: The maximum size for the log file, in bytes, before creating a

new file for the day. The default is 20 MB.

l Roll On File Size Limit: When a log file reaches the specified number of bytes, a new

log file is generated.

Smart Integration Connector Guide 62

l Retained File Count Limit: Number of log files to retain. If logs do not exceed the limit

in bytes (one file/day), this would allow for the configured value (with 40 days being the

default) of log retention. If the Smart Integration Service is used heavily and log files are

set to higher levels of verbosity, this could result in fewer days of log retention. Ensure

that the growth rate and retention periods align with your organizational requirements.

The default location for log files is:

%programdata%\OneStream Software\OneStreamGatewayService\Logs.

Smart Integration Connector Guide 63

Advanced Networking and
Whitelisting
Smart Integration Connector supports two different types of whitelisting. You can whitelist

traffic from specific IPs or CIDRs (Classless Inter-Domain Routings, which is a range of IPs)

from the internet to your environment or from the internet to the Azure Relay Service.

Whitelist the Azure Relay to your Firewall
You can whitelist the Azure Relay to your firewall through namespace or IP range.

1. To limit traffic from your Azure Relay namespace:

a. Add the namespace <*.servicebus.windows.net> or go to System >

Administration > Smart Integration Connector and click Relay at the top.

Smart Integration Connector Guide 64

Advanced Networking and Whitelisting

b. The Relay Name is the namespace of the Azure Relay. Add this namespace to

your firewall rules to restrict traffic from this Azure Relay. The namespace should

have a format similar to this example: <somehost>.servicebus.windows.net.

NOTE: The namespace will be different for your development and production

environments.

2. (Optional) Additionally, you can limit traffic further from an IP address by following these

Azure-specific instructions:

a. Whitelist all IP addresses returned by this script.

b. Review these IP addresses periodically as Microsoft may change them. Published

changes are found on the Microsoft Community Hub.

Whitelist traffic to the Azure Relay
You can limit Azure Relay to only accept traffic from certain IP ranges.

1. Set the outbound port to 443. This port needs to be fully open outbound to communicate

with the Azure Relay.

Smart Integration Connector Guide 65

Advanced Networking and Whitelisting

https://github.com/RyanTBerry/azure-relay-dotnet/blob/dev/tools/GetNamespaceInfo.ps1
https://techcommunity.microsoft.com/t5/messaging-on-azure-blog/upcoming-changes-to-ip-addresses-for-azure-relay/ba-p/3285254

2. From the OneStream Windows Application client go to System > Administration >

Smart Integration Connector > Relay.

3. Select IPv4 Whitelist.

4. Enter IPv4 compatible IP (XXX.XXX.XXX.XXX) or CIDR addresses

(XXX.XXX.XXX.XXX/XX) separated by a semi colon in the IPv4 Whitelist dialog box.

NOTE: IPv6 addresses are not currently supported.

NOTE: Do not include any extra spaces for characters.

5. Restart your Local Gateway Service.

Smart Integration Connector Guide 66

Advanced Networking and Whitelisting

Use Smart Integration Connector
You can use Smart Integration Connector to access data from your Local Gateway

Connection Data Source or through Direct Connections.

Examples
Data Adapters Example

1. Go to Application > Presentation > Dashboards > Workspaces > [choose

Workspace] > [choose Maintenance Unit] > Data Adapters.

2. Create or select an existing data adapter.

3. Verify that the Database Location is External and the External Database

Connection is the custom connection that you defined earlier.

Smart Integration Connector Guide 67

Use Smart Integration Connector

4. Enter a valid SQL Query.

5. Test the data adapter and view the results.

SQL Table Editor Example
The following use case describes how to send a query after establishing a connection.

1. Go to Application > Presentation > Dashboards > Workspaces > [choose

Workspace] > [choose Maintenance Unit] > [choose Maintenance Unit] >

Components > SQL Table Editor.

2. Create or open a SQL Table Editor.

3. Verify the following:

Smart Integration Connector Guide 68

Use Smart Integration Connector

l Database Location is External,

l External Database Connection is the custom connection that you defined

earlier,

l Table Name is defined as the table you want to return data from.

4. Open the associated dashboard and run the query. The OneStream Smart Integration

Connector will connect to the external database. If it connects correctly, the query will

populate.

Grid View Example
1. Go to Application > Presentation > Dashboards >Workspaces > [choose

Workspace] > [choose Maintenance Unit] > [choose Maintenance Unit] >

Components > Grid View.

2. Create or open a grid view.

Smart Integration Connector Guide 69

Use Smart Integration Connector

3. Configure the grid to use the data adapter.

4. Run the associated dashboard to see the data.

Perform a Drill Back
The following snippet describes how to load data from a local gateway connection data source

and how to perform a drill back. The example below has been updated from the Standard SQL

Connectors business rule. If you do not have the Snippet Editor with the OneStream

Application, you can find the Snippet Editor on the MarketPlace.

1. Download the Snippet Editor from the MarketPlace.

2. Navigate to Application > Tools > Business Rules.

3. Open Connector.

4. Navigate to Snippets > SQL Connector > Standard SQL Connectors.

5. Copy the Sample Business Rule.

6. Edit the query information. Enter dim ConnectionStringGateway As String = Your

Connection information.

Smart Integration Connector Guide 70

Use Smart Integration Connector

NOTE: This example assumes that you have completed the setup and

installation process and configured a custom database connection in the

System Configuration as a Gateway type. Refer to Define Database

Location in OneStream for more information.

'Get the query information (prior to using the gateway)
Dim connectionstring As String = GetConnectionString(si, globals, api)
'Get the query information (using the gateway)
Dim connectionString_gateway As String = GetConnectionString_Gateway(si, global3, api)|

7. Enter the connection name. In this example, “Northeast Sales” is the Gateway

Connection Name as defined in the application configuration.

'Create a Connection string to the External Database (prior to using the gateway)
Private Function GetConnectionString(ByVal si As Sessioninfo, ByVal globals As BRGlobals,
ByVal api As Transformer) As String

Try
'Named External Connection
'---
Return "Revenue Mgmt System"

Catch ex As Exception
Throw ErrorHandler.LogWrite(si, New XFException(si, ex))

End Try
End Function

'Create a Connection string to the External Database (using the Gateway)
Private Function GetConnectionStringGateway(ByVal si As Sessioninfo, ByVal globais As
BRGlobals, ByVal api As Transformer) As String

Try
'Named External Connection - Gateway
'---
Return "Northeast Sales"

Catch ex As Exception
Throw ErrorHandler.LogWrite(si, New XFException(si, ex))

End Try
End Function

8. Enter the drill back information to your database.

Smart Integration Connector Guide 71

Use Smart Integration Connector

If args.DrillCode.Equals(StageConstants.TransformationGeneral.DrillCodeDefaultValue,
StringComparison.InvariantCulturelgnoreCase) Then

'Source GL Drill Down
 drillTypes.Add(New DrillBackTypeInfo(ConnectorDrillBackDisplayTypes.FileShareFile, New
NameAndDesc("InvoiceDocument","Invoice Document")))
 drillTypes.Add(New DrillBackTypeInfo(ConnectorDrillBackDisplayTypes.DataGrid, New
NameAndDesc("MaterialTypeDetail","Material Type Detail")))
 drillTypes.Add(New DrillBackTypeInfo(ConnectorDrillBackDisplayTypes.DataGrid, New
NameAndDesc("MaterialTypeDetail_Gateway","Material Type Detail (Smart Integration)")))

9. Edit the level of drill back information returned.

Example: This example shows previously existing code that

leverages a VPN based SQL connection and the Gateway

based method shown in the second "Else If" block.

Else If args.DrillBackType.NameAndDescription.Name.Equals("MaterialTypeDetail",
StringComparison.InvariantCultureIgnoreCase) Then
'Level 1: Return Drill Back Detail
Dim dri1lBackSQL As String - GetDrillBackSQL_Ll(si, globais, api, args)
Dim drillBackInfo As New DrillBackResultInfo

 drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.OataGrid
 drillBackInfo.DataTable = api.Parser.GetXFDataTableForSQLQuery(si, DbProviderType.SqlServer,
connectionstring. True, drillBackSQL, False, args.PageSize, args.PageNumber)
Return drillBacklnfo

Else If args.DrillBackType.NameAndDescription.Name.Equals("MaterialTypeDetail_Gateway",
StringComparison.lnvariantCultureIgnoreCase) Then
'Level 1: Return Drill Back Detail
Dim drillBackSQL As String = GetDrillBackSQL_Ll(si, globais, api, args)
Dim drillBackInfo As New DrillBackResultInfo

 drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.OataGrid
 drillBackInfo.DataTable = api.Parser.GetXFDataTableForSQLQuery(si, DbProviderType.Gateway,
connectionstring_gateway. True, drillBackSQL, False, args.PageSize, args.PageNumber)
Return drillBacklnfo

Smart Integration Connector Guide 72

Use Smart Integration Connector

Perform a Write Back
You can perform a write back using Smart Integration Connector leveraging the defined

credentials to the local gateway datasource at the Smart Integration Connector Gateway. If

the credentials have permission to insert, update, and/or delete records in a remote

datasource, a OneStream business rule could be leveraged to write-back, update, and/or

delete data as needed to support a financial process.

Example: The following example shows how to insert rows and

columns to a Smart Integration Connector remote database.

Imports System
Imports System.Collections.Generic
Imports System.Data
Imports System.Data.Common
Imports System.Globalization
Imports System.IO
Imports System.Linq
Imports System.Windows.Forms
Imports Microsoft.VisualBasic
Imports OneStream.Finance.Database
Imports OneStream.Finance.Engine
Imports OneStream.Shared.Common
Imports OneStream.Shared.Database
Imports OneStream.Shared.Engine
Imports OneStream.Shared.Wcf
Imports OneStream.Stage.Database
Imports OneStream.Stage.Engine

Namespace OneStream.BusinessRule.Extender.SIC_BulkCopyExample
Public Class MainClass

Public Function Main(ByVal si As SessionInfo, ByVal globals As BRGlobals, ByVal api
As Object, ByVal args As ExtenderArgs) As Object

Try
' SIC Gateway name
Dim sicGatewayName As String = "jl-db-achqa1-gateway"

' SIC remote rule
Dim sicRemoteRule As String = "SIC_Functions"

' SIC remote rule function
Dim sicRemoteRuleFunction As String = "RunOperation"

' Create and populate DataTable
Dim dt As New DataTable()

 dt.Columns.Add("Scenario", GetType(String))

Smart Integration Connector Guide 73

Use Smart Integration Connector

 dt.Columns.Add("Time", GetType(String))
 dt.Columns.Add("Entity", GetType(String))
 dt.Columns.Add("Account", GetType(String))
 dt.Columns.Add("Amount", GetType(Double))
 dt.Rows.Add("Actual", "2023M3", "Houston Heights", "Net Sales", 100.25)
 dt.Rows.Add("Actual", "2023M3", "South Houston", "Net Sales", 1230.66)

' Compress data table before passing into remote business rule
Dim dtCompress As CompressionResult = CompressionHelper.CompressJsonObject
(Of DataTable)(si, dt, XFCompressionAlgorithm.DeflateStream)

Dim dtObj(2) As Object ' Create object to store arguments for remote business rule
 dtObj(0) = dtCompress ' compressed datatable
 dtObj(1) = "SIC_WriteBack" ' remote database table name
 dtObj(2) = "RevenueMgmt" ' remote data source name

' Execute remote business rule to bulk copy to target table
Dim bulkRemoteResults As RemoteRequestResultDto

 =BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, sicRemoteRule,
 dtObj, sicGatewayName,sicRemoteRuleFunction,String.Empty, False, 600)

' Get result status
If bulkRemoteResults.RemoteResultStatus <>

 RemoteMessageResultType.RunOperationReturnObject Then ' Check if successful
' Failed, do something

 BRAPi.ErrorLog.LogMessage(si,"Failed with status:" & bulkRemoteResults.
 RemoteResultStatus.ToString)

End If

' Get returned message
Dim returnedMsg As String = CompressionHelper.InflateJsonObject(Of String)
(si,bulkRemoteResults.resultDataCompressed)

 BRAPi.ErrorLog.LogMessage(si,returnedMsg)

Return Nothing
Catch ex As Exception

Throw ErrorHandler.LogWrite(si, New XFException(si, ex))
End Try

End Function
End Class

End Namespace

The Extensibility Rule above calls the following Smart Integration Function:

Imports System
Imports System.Collections.Generic
Imports System.Data
Imports System.Data.Common
Imports System.Globalization

Smart Integration Connector Guide 74

Use Smart Integration Connector

Imports System.IO
Imports System.Linq
Imports System.Data.SqlClient
Imports OneStream.Shared.Common
Imports OneStreamGatewayService

Namespace OneStream.BusinessRule.SmartIntegrationFunction.SIC_Functions
Public Class MainClass

' Function to bulk copy a compressed data table to a SQL database table
' Pass in compressed data table, database table name and data source name
Public Shared Function RunOperation(dtCompress As CompressionResult,tablename As String,

 datasource As String) As String

' --

' Get SQL connection string
Dim connString As String = APILibrary.GetRemoteDataSourceConnection(datasource)

' Inflate compressed datatable
Dim dt As DataTable = CompressionHelper.InflateJsonObject(Of DataTable)
(New SessionInfo,dtCompress)

If dt IsNot Nothing AndAlso dt.Rows.Count > 0 Then
' Check data table has been created and is populated

' Create sql connection to DWH
Using sqlTargetConn As SqlConnection = New SqlConnection(connString)

 sqlTargetConn.Open ' Open connection

Using bulkCopy = New SqlBulkCopy(sqlTargetConn)

 bulkCopy.DestinationTableName = tableName ' DWH table
 bulkCopy.BatchSize = 5000
 bulkCopy.BulkCopyTimeout = 30

 bulkCopy.WriteToServer(dt) ' Bulk copy data table to database table

End Using

End Using

Else
Throw New Exception("Problem uncompressing data in SIC gateway")

End If

Return $"{dt.Rows.Count} rows bulk inserted into table {tableName}"

End Function

End Class
End Namespace

Smart Integration Connector Guide 75

Use Smart Integration Connector

Support for sFTP
Smart Integration Connector provides support for connecting to sFTP servers to send and

retrieve files. Perform the steps in the following sections to establish a connection and then

send and retrieve files.

NOTE: You must have an sFTP server available on a port. The port must be

allowed for inbound and outbound connections on the Local Gateway Server.

For this example, we have used port 22.

1. Login to OneStream.

2. Navigate to System > Administration > Smart Integration Connector.

3. Create a New Gateway and fill out all of the corresponding details for your Gateway and

the Gateway Server.

4. From Connection Type, select Direct Connection (e.g., SFTP, WebAPI).

5. For Bound Port at Gateway, enter 22.

6. For Remote Gateway Host, enter the IP address or resolvable host name of the

machine where your SFTP server is located.

Smart Integration Connector Guide 76

Use Smart Integration Connector

7. For Bound Port in OneStream, enter -1 to automatically assign an unused port

number. You can also specify your own port number by entering a value greater than

1024 and less than 65535. It is a best practice to use a higher value because it is less

likely that number will be in use as this port number must be globally unique across all

applications hosted on the OneStream servers.

8. Click OK.

9. Copy the Gateway to the OneStream Smart Integration Connector Local Gateway

Server Configuration.

Smart Integration Connector Guide 77

Use Smart Integration Connector

10. Save the Local Gateway Server configuration and restart the Smart Integration

Connector Gateway service.

Example: Here is an example of how you can upload and

download files through an SFTP extensibility rule.

NOTE: You will need to add WinSCPnet.DLL to your business rule Referenced

Assemblies from the Properties tab in the business rule.

Imports System
Imports System.Collections.Generic
Imports System.Data
Imports System.Data.Common
Imports System.Globalization
Imports System.IO
Imports System.Linq
Imports System.Windows.Forms
Imports Microsoft.VisualBasic
Imports OneStream.Finance.Database
Imports OneStream.Finance.Engine
Imports OneStream.Shared.Common
Imports OneStream.Shared.Database
Imports OneStream.Shared.Engine
Imports OneStream.Shared.Wcf
Imports OneStream.Stage.Database
Imports OneStream.Stage.Engine
Imports WinSCP

Namespace OneStream.BusinessRule.Extender.SFTP_Example
Public Class MainClass

Public Function Main(ByVal si As SessionInfo, ByVal globals As BRGlobals, ByVal api
As Object, ByVal args As ExtenderArgs) As Object

Try

' Setup the objects to read Gateway Details from BRAPIs
Dim objGatewayDetails As GatewayDetails = BRApi.Utilities.GetGatewayConnectionInfo(si,

"WinSCP_Gateway")
Dim objRemoteRequestResultDto As RemoteRequestResultDto =

BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "SFTP_Password", Nothing, "rochester_
gateway",String.Empty,"SFTP_Password", False, 600)

' Setup session options
Dim sessionOptions As New SessionOptions
With sessionOptions

Smart Integration Connector Guide 78

Use Smart Integration Connector

 .Protocol = Protocol.Sftp
 .HostName = "localhost" 'HostName in this instance is in refrence to
OneStream and will always be localhost.
 .UserName = "onestreamtest" 'sFTP server UserName

'.Password = "**********" 'sFTP server Password
 .Password = objRemoteRequestResultDto.ObjectResult ' This is the returned value
from the remote rule that obtains the customer controlled password
 .PortNumber = objGatewayDetails.OneStreamPortNumber
'use BRAPI to populate Port Number and return the dynamically assigned value from OneStream
 .SshHostKeyFingerprint = "*****************************" 'SSH Host Key from sFTP
host

End With

Using session As New Session
' Connect

 session.Open(sessionOptions)

' Get the filepath
' BatchHarvest in this example is File Share / Applicaitons / GolfStream / Batch /

Harvest
Dim fileUPPath As String = BRAPi.Utilities.GetFileShareFolder(si,

FileShareFolderTypes.BatchHarvest, Nothing)
Dim fileDNPath As String = BRAPi.Utilities.GetFileShareFolder(si,

FileShareFolderTypes.BatchHarvest, Nothing)

' Upload or download files
Dim transferOptions As New TransferOptions

 transferOptions.TransferMode = TransferMode.Binary

Dim transferResult As TransferOperationResult
' Upload

 fileUPpath = fileUPPath & "\SFTP_TEST_UPLOAD.txt"
 transferResult = session.PutFiles(fileUPpath, "/", False, transferOptions)

'Throw on any error
 transferResult.Check()

' Download
 fileDNpath = fileDNPath & "\SFTP_TEST_DOWNLOAD.txt"
 transferResult = session.GetFiles("\SFTP_TEST_DOWNLOAD.txt", fileDNpath, False,
transferOptions)

'Throw on any error
 transferResult.Check()

End Using

Return Nothing
Catch ex As Exception

Throw ErrorHandler.LogWrite(si, New XFException(si, ex))
Return Nothing

End Try

End Function
End Class

End Namespace

Smart Integration Connector Guide 79

Use Smart Integration Connector

Transferring Files from Local FileShare
You can use a Data Management job to move files Smart Integration Connector from a local

FileShare. To do this, you build an extender business rule and call it through a data

management job. This extender business rule will call a Smart Integration Function (remote

function) and obtain the results.

Step 1 - Setup the Remote Server / Remote Share
To get started, setup the Smart Integration Function:

1. Navigate to Application > Tools > Business Rules.

2. Open the Smart Integration Function folder.

3. Create a new business rule (for example, TestFileRead) .

4. Copy and paste the following business rule code snippet.

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Common;
using System.Globalization;
using System.IO;
using System.Linq;

namespace OneStream.BusinessRule.SmartIntegrationFunction.TestFileRead
{

public class MainClass
{

public byte[] RunOperation(string year)
{

string fname = @"c:\temp\hw_" + year + ".csv";
byte[] buffer = System.IO.File.ReadAllBytes(fname);
return buffer;

 }

public byte[] GetOtherFileData(string year)
{

string fname = @"c:\temp\zw_" + year + ".csv";

Smart Integration Connector Guide 80

Use Smart Integration Connector

byte[] buffer = System.IO.File.ReadAllBytes(fname);
return buffer;

 }

public bool DeleteOldFileData(string year)
{

string fname = @"c:\temp\zw_" + year + ".csv";
try
{

 System.IO.File.Delete(fname);
return true;

 }
catch (IOException)
{

return false;
 }
 }
 }
}

Step 2 - Pull file from Extender Business Rule
1. Navigate to Application > Tools > Business Rules.

2. Open the Extensibility Rules folder.

3. Create a new business rule (for example, ProcessRemoteFileData) .

4. Copy and paste the following business rule code snippet.

Imports System
Imports System.Data
Imports System.Data.Common
Imports System.IO
Imports System.Collections.Generic
Imports System.Globalization
Imports System.Linq
Imports Microsoft.VisualBasic
Imports System.Windows.Forms
Imports OneStream.Shared.Common
Imports OneStream.Shared.Wcf
Imports OneStream.Shared.Engine
Imports OneStream.Shared.Database
Imports OneStream.Stage.Engine

Smart Integration Connector Guide 81

Use Smart Integration Connector

Imports OneStream.Stage.Database
Imports OneStream.Finance.Engine
Imports OneStream.Finance.Database

Namespace OneStream.BusinessRule.Extender.ProcessRemoteFileData
Public Class MainClass

Public Function Main(ByVal si As SessionInfo, ByVal globals As BRGlobals, ByVal
api As Object, ByVal args As ExtenderArgs) As Object

Try
Dim stepNumber As String = "1"

If (Not args.NameValuePairs Is Nothing) Then
' Extracting the value from the parameters collection
If (args.NameValuePairs.Keys.Contains("step")) Then

 stepNumber = args.NameValuePairs.Item("step")
End If

 BRApi.ErrorLog.LogMessage(si, "File Processing Step: " & stepNumber)
End If

Select Case stepNumber

Case Is = "1"
 GetData(si)

Return Nothing

Case Is = "2"
 CleanupData(si)

Return Nothing

End Select

Catch ex As Exception
Throw ErrorHandler.LogWrite(si, New XFException(si, ex))

End Try

Return Nothing
End Function

Public Sub CleanupData(ByVal si As SessionInfo)

Dim argTest(0) As Object
 argTest(0) = "2023"

' Here we are telling it to specifically call
Dim objRemoteRequestResultDto As RemoteRequestResultDto =

BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "TestFileRead", argTest, "gateway-
jasonl-smartic", "DeleteOldFileData")

If (objRemoteRequestResultDto.RemoteResultStatus =
RemoteMessageResultType.RunOperationReturnObject) Then

' The delete method returns a true/false return type

Smart Integration Connector Guide 82

Use Smart Integration Connector

Dim result As Boolean
' ObjectResultValue introduced in v7.4 to simplify obtaining the

return value from a method that doesn't return a
' Dataset/Datatable

 result = objRemoteRequestResultDto.ObjectResultValue

Dim objRemoteRequestResultDtoCached As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayCachedBusinessRule(si, "TestFileReadCache", argTest,
"gateway-jasonl-smartic", String.Empty)

 BRApi.ErrorLog.LogMessage(si, "File Deleted: " & result)
Else

If (Not (objRemoteRequestResultDto.remoteException Is Nothing)) Then
Throw ErrorHandler.LogWrite(si, New XFException(si,

objRemoteRequestResultDto.remoteException))
End If

End If

End Sub

Public Sub GetData(ByVal si As SessionInfo)

' Demonstrating how to pass parameters
' We create an object array that matches the number of parameters
' To the remote function. In this case, we have 1 parameter that is a

string
Dim argTest(0) As Object

 argTest(0) = "2023"

' This is where you can allow caching of the remote function. We are
passing in true at the end to force the cache to be updated

' We are also allowing the function to run for 90 seconds.
' String.empty means this will look for a remote function/method called

"RunOperation"
Dim objRemoteRequestResultDto As RemoteRequestResultDto =

BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "TestFileRead", argTest,
"ryantestconnection2", String.Empty,"TestFileRead", True, 90)

If (objRemoteRequestResultDto.RemoteResultStatus =
RemoteMessageResultType.RunOperationReturnObject) Then

Dim bytesFromFile As Byte()
 bytesFromFile = objRemoteRequestResultDto.ObjectResultValue

Dim valueAsString As String = System.Text.Encoding.UTF8.GetString
(bytesFromFile)

Return valueAsString
 bytesFromFile = Convert.FromBase64String
(objRemoteRequestResultDto.ObjectResultValue)

'bytesFromFile = objRemoteRequestResultDto.ObjectResultValue

Dim valueAsString As String = System.Text.Encoding.UTF8.GetString
(bytesFromFile)

' Do something with the files here....
 BRApi.ErrorLog.LogMessage(si, "File Contents: " & Left
(valueAsString,10))

Smart Integration Connector Guide 83

Use Smart Integration Connector

' We are saving the file into the OneStream Share here
' This is an option to allow other OneStream functions to process the

data
'Dim groupFolderPath As String =

FileShareFolderHelper.GetGroupsFolderForApp(si, True, AppServerConfig.GetSettings
(si).FileShareRootFolder, si.AppToken.AppName)

Dim groupFolderPath As String = BRAPi.Utilities.GetFileShareFolder(si,
FileShareFolderTypes.BatchHarvest, Nothing)

Using sw As StreamWriter = New StreamWriter(groupFolderPath &
"\outputfile.csv")
 sw.Write(valueAsString)
 sw.Close()

End Using
Else

If (Not (objRemoteRequestResultDto.remoteException Is Nothing)) Then
Throw ErrorHandler.LogWrite(si, New XFException(si,

objRemoteRequestResultDto.remoteException))
End If

End If
End Sub

End Class
End Namespace

5. Test your Extender Business Rule via the Execute Extender button in the toolbar.

Step 3 - Automate from Data Management / Task
Scheduler
After the Extensibility Rule has been created and tested you can automate from a Data

Management Job and associate Task Schedule. See Task Scheduler for more information.

1. Navigate to Application > Tools > Data Management.

2. Create a new Data Management Group.

Smart Integration Connector Guide 84

Use Smart Integration Connector

Task Scheduler.htm

3. Enter the business rule.

4. Set the first Parameter to step=1.

5. Set the Parameters to step=2.

6. Create associated Task Schedule to run the Data Management job.

Obtain Data through a WebAPI
In this scenario, you have a WebAPI (IPaaS integration or another accessible REST API) to

obtain and pass back data to OneStream. You can use the following remote business rule in

Smart Integration Connector to invoke the API. If you have results that are in JSON format,

you can convert them to a data table and send them back to OneStream. If the data from the

WebAPI is in JSON, you can process the data in Smart Integrator Connector. Additionally, you

can send the raw data back as a string to a data management job for further testing.

Direct connections are preferred for this method and can be invoked using business rules

within OneStream similar to the sFTP example provided above.

See Multiple WebAPI Connections for best practices on scenarios with multiple WebAPIs.

Single WebAPI Connection
To set up a single WebAPI connection:

Smart Integration Connector Guide 85

Use Smart Integration Connector

1. Set up a Direct Connection Gateway.

2. Export the Configuration and import to your Local Gateway Server. See the Export and

Import the Gateway Configuration section for more information on this process.

3. Refresh your Gateways and verify this new Gateway is online.

IMPORTANT: Copy your Bound Port in OneStream. You will reference

this later in the extensibility rule.

Smart Integration Connector Guide 86

Use Smart Integration Connector

4. Create the Extensibility Rule below:

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Common;
using System.Globalization;
using System.IO;
using System.Linq;
using OneStream.Shared.Common;
using OneStream.Shared.Database;
using OneStream.Shared.Engine;
using OneStream.Shared.Wcf;
using System.Net;
using System.Net.Http;
using Newtonsoft.Json;
using System.Net.Http.Headers;

namespace OneStream.BusinessRule.Extender.SIC_WebAPI
{

public class MainClass
{

private static readonly HttpClient internalHttpClient = new HttpClient();

public object Main(SessionInfo si, BRGlobals globals, object api, ExtenderArgs
args)

{
try
{

 internalHttpClient.DefaultRequestHeaders.Accept.Clear();
 internalHttpClient.DefaultRequestHeaders.Accept.Add
(new MediaTypeWithQualityHeaderValue("application/json"));
 internalHttpClient.DefaultRequestHeaders.Accept.Add
(new MediaTypeWithQualityHeaderValue("application/x-www-form-urlencoded"));

Smart Integration Connector Guide 87

Use Smart Integration Connector

 internalHttpClient.DefaultRequestHeaders.Accept.Add
(new MediaTypeWithQualityHeaderValue("application/octet-stream"));
 internalHttpClient.DefaultRequestHeaders.Accept.Add
(new MediaTypeWithQualityHeaderValue("text/plain"));
 internalHttpClient.DefaultRequestHeaders.Accept.Add
(new MediaTypeWithQualityHeaderValue("*/*"));

// The header must be set or some connections maybe refused.
 internalHttpClient.DefaultRequestHeaders.Host = "api.open-meteo.com";

// In this example, 20540 is the Bound Port in OneStream for the Gateway
being used.

var stringTask = internalHttpClient.GetStringAsync
("https://localhost:20540/v1/forecast?latitude=40.73&longitude=-73.94&daily=temperature_
2m_max,temperature_2m_min&temperature_unit=fahrenheit&timezone=America%2FNew_York");

// Display the result in the exception dialog as an example.
throw new Exception(stringTask.Result);

 }
catch (Exception ex)
{

throw ErrorHandler.LogWrite(si, new XFException(si, ex));
 }
 }
 }
}

5. Compile and test the business rule. If the extensibility ran successfully, you should see

the correct data that corresponds with the business rule in the Exception dialog box:

Smart Integration Connector Guide 88

Use Smart Integration Connector

Multiple WebAPI Connections
If you are using more than one WebAPI, the best practice is to perform this process using a

single Gateway and multiple remote Business Rules.

Use the following OneStream business rule to invoke the request.

Dim objRemoteRequestResultDto As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "RemoteWebAPISample", Nothing,
"testconnection",String.Empty) If (objRemoteRequestResultDto.RemoteResultStatus =
RemoteMessageResultType.Success) Dim xfDT = New XFDataTable
(si,objRemoteRequestResultDto.resultSet,Nothing,1000) End If

Use the following remote business rule to execute the request in C#

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Common;
using System.Globalization;
using System.IO;
using System.Linq;
using System.Net;
using System.Net.Http;
using Newtonsoft.Json;
using System.Net.Http.Headers;

namespace OneStream.BusinessRule.SmartIntegrationFunction.RemoteWebAPISample
{

public class MainClass
{

private static readonly HttpClient internalHttpClient = new HttpClient();

static MainClass()
{

 internalHttpClient.DefaultRequestHeaders.Accept.Clear();
 internalHttpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue
("application/json"));
 internalHttpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue
("application/x-www-form-urlencoded"));
 internalHttpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue
("application/octet-stream"));
 internalHttpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue
("text/plain"));
 internalHttpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue
("*/*"));
 }

Smart Integration Connector Guide 89

Use Smart Integration Connector

public DataTable RunOperation()
{
var stringTask = internalHttpClient.GetStringAsync

(https://localhost:44388/WeatherForecast);

var msg = stringTask;
 DataTable dt = (DataTable)JsonConvert.DeserializeObject(stringTask.Result,
(typeof(DataTable)));

return dt;
 }
 }
}

Support for DLL Migration
For OneStream Platform version 8.0 and above, all customer-supplied DLLs will be

referenced through Smart Integration Connector. To use a DLL, copy the DLLs to the

Referenced Assemblies Folder in the Local Gateway Server Utility and reference this DLL

within your Smart Integration Function. See Referenced Assemblies Folder.

To verify the Referenced Assemblies Folder path:

1. Open the OneStream Local Gateway Configuration and Run as Administrator.

2. Navigate to and open Local Application Data Settings.

3. The file path under Referenced Assemblies Folder opens to the default location.

Smart Integration Connector Guide 90

Use Smart Integration Connector

4. Click the OK button.

See the following SAP example for this process in use. See Smart Integration Connector

Settings for more information on these fields.

Support for ERPConnect (SAP)
As an alternative to creating a Local Gateway Connection to your SAP database, you can

connect to SAP using third-party DLLs, such as ERPConnect##.dll. ERPConnect##.dll can be

referenced using a Smart Integration Connector Remote business rule. Although

ERPConnect45.dll can no longer enable a connection to SAP systems starting with Platform

version 8.0, a newer version ERPConnectStandard20.dll is available through the download

DLL Packages from the Platform page of the Solution Exchange. ERPConnect requires

additional libraries to be obtained from SAP as well, which can reside in the same reference

assembly folder as ERPConnect.

To get started:

Smart Integration Connector Guide 91

Use Smart Integration Connector

https://solutionexchange.onestream.com/dashboard/home/browse

1. From the Platform page of the Solution Exchange, download the DLL Packages, which

contains the ERPConnectStandard20.dll file.

2. Copy the ERPConnectStandard20.dll to your Referenced Assemblies Folder.

3. Install the required Visual C++ 2013 Runtime.

4. From SAP, download and copy SAP NetWeaver RFC Library DLL (sapnwrfc.dll) and

associated icudt50.dll, icuin50.dll, icuuc50.dll to your Referenced Assemblies Folder.

See Theobald Software ERPConnect Requirements for additional information.

5. Modify your business rules to use the ERPConnectStandard20.dll.

6. Navigate to Application > Tools > Business Rules.

7. Expand the Smart Integration Function list.

8. Create a new Smart Integration Function or select an existing one.

9. Click the Properties tab.

Smart Integration Connector Guide 92

Use Smart Integration Connector

https://solutionexchange.onestream.com/dashboard/home/browse
https://www.microsoft.com/en-US/download/details.aspx?id=40784
https://help.theobald-software.com/en/erpconnect/prerequisites-and-installation/requirements#other-applications-and-frameworks

10. Enter ERPConnectStandard20.dll in the Referenced Assemblies field.The Smart

Integration Connector Gateway server will attempt to locate this DLL in the previously

defined folder: Referenced BusinessRule AssemblyFolder.

11. Add Imports for ERPConnect and ERPConnect.Utils.

Smart Integration Connector Guide 93

Use Smart Integration Connector

12. Verify you can compile the function on your Gateway.

You are now ready to add your custom code.

Smart Integration Connector Guide 94

Use Smart Integration Connector

Business Rules
The Smart Integration Connector Capabilities introduce additional business rule APIs (BR

APIs) to allow for execution and management of remote business rules inside the context of

the Smart Integration Connector gateway. These rules are transported using https to the

Smart Integration Connector local gateway, compiled locally, executed, and the results

returned to the caller for further processing. They provide a mechanism for complex drill

backs, data processing scenarios or to invoke remote webAPIs hosted in your network.

NOTE: Gateways must have a local data source defined to invoke remote

business rules.

There are two ways business rules can be used with the Smart Integration Connector

Gateway:

l OneStream BRAPIs interact with a specific local gateway and run on OneStream

application servers.

l Business rules that reference DLLs that are only accessible by the Local Gateway

Server. These BRs are compiled and executed on the local gateway (Remote Business

Rules when creating them in the Windows Desktop Client).

In these scenarios, the local gateway must have the allowRemoteCodeExec setting

configured to True to enable remote execution.

The BR APIs are outlined below:

ExecRemoteGatewayRequest
ExecRemoteGatewayCachedBusinessRule
ExecRemoteGatewayJob

Smart Integration Connector Guide 95

Business Rules

ExecRemoteGatewayBusinessRule
GetRemoteDataSourceConnection
GetRemoteGatewayJobStatus
GetSmartIntegrationConfigValue
GetGatewayConnectionInfo
Incompatible Business Rules

ExecRemoteGatewayRequest
Initiates a request to a local gateway as specified in the remote request object. This request is

dispatched to the Smart Integration Connector local gateway connection data source with the

specified command remote invoked.

NOTE: This method is used for request and response type interactions to a

remote endpoint that runs for three or less minutes. The default execution

timeout is 90 seconds and can be overridden by setting the CommandTimeout

property on the RemoteRequestDTO instance provided.

Parameter details:

l RemoteRequestDTO: Remote request object populated with the remote command and

endpoint

l Returns: RemoteRequestResultDto - Result of execution including the status and any

exceptions which may have occurred on the remote endpoint

Following is an example connector business rule that would run on the OneStream application

server sending a remote request and block of code to a Local Gateway Connection:

Dim objxfRemoteRequestResultDto As RemoteRequestResultDto
Dim objxfRemoteRequest As New RemoteCodeRequestDto
' Indication the desire is to run a remote block of code
objxfRemoteRequest.connectionType = RemoteCommandType.RemoteCodeExec

Smart Integration Connector Guide 96

Business Rules

#GetRemot2
#GetSmart

' Name of the remote host to pass to
objxfRemoteRequest.gatewayHostforRequest = "testconnection"
Dim strCode As String
strCode = "using System;...." ' Valid block of C# or VB.NET code
objxfRemoteRequest.LanguageType = RemoteCodeLanguageType.CSHARP
objxfRemoteRequest.remoteCodeBlock = strCode
objxfRemoteRequestResultDto=BRApi.Utilities.ExecRemoteGatewayRequest(objxfRemoteRequest)
Dim xfDT = New XFDataTable(si,objxfRemoteRequestResultDto.resultSet,Nothing,1000)

This BR API can also be used to invoke arbitrary SQL commands against a Smart Integration

Connector local gateway connection data source at your site:

Dim drillBackInfo As New DrillBackResultInfo
Dim drillBackSQL As String = "SELECT CustName, InvDesc, BomCode, UnitPrice, Units, Amount,
'BomDetail' As DrillTypeCode FROM InvoiceMaterialDetail WHERE
(InvYear = 2022) And (InvMonth = 'M3') And (PlantCode = 'H200') And (InvNo = 'I1-H200-AH2347-
2022M3')
And (ProdModel = 'P-Boy') And (DestinationCode = '1230') And (CustID = 'AH2347')ORDER BY BomCode"
Dim objxfRemoteRequestResultDto As RemoteRequestResultDto
Dim objxfRemoteRequest As New RemoteRequestDto
' Indicate this is a remote SQL command request
objxfRemoteRequest.connectionType = RemoteCommandType.SQLCommand
objxfRemoteRequest.GatewayRemoteDBConnection = "RevenueMgmt" ' Name of the connection defined in the
remote endpoint
objxfRemoteRequest.gatewayHostforRequest = "testconnection" ' Name of the remote host to pass to
objxfRemoteRequest.RemoteCommand = drillBackSQL
objxfRemoteRequestResultDto=BRApi.Utilities.ExecRemoteGatewayRequest(objxfRemoteRequest)
Evaulate the results to determine if it was successful
If (objxfRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.Success) Then

Dim xfDT = New XFDataTable(si,objxfRemoteRequestResultDto.ResultSet,Nothing,1000)
 drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.DataGrid
 drillBackInfo.DataTable = xfDT

Return drillBackInfo
Else
 drillbackinfo.TextMessage = "Not Successful"
 drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.TextMessage
Return drillBackInfo

End If

Remote function returning a datatable (VB.NET) without parameters:

'Here we are telling it to specifically call a remote Smart Integration Function
called
'GetDataFromDB at SIC Gateway called TestConnection with a method called RunOperation

Dim objRemoteRequestResultDto As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "GetDataFromDB", Nothing, " TestConnection",

Smart Integration Connector Guide 97

Business Rules

"RunOperation")
If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.Success) Then
If (objRemoteRequestResultDto.ResultType = RemoteResultType.DataTable) Then

 BRApi.ErrorLog.LogMessage(si, "Data Returned: " &
objRemoteRequestResultDto.ResultSet.Rows.Count)

End If

Else
If (Not (objRemoteRequestResultDto.remoteException Is Nothing)) Then
Throw ErrorHandler.LogWrite(si, New XFException(si,

objRemoteRequestResultDto.remoteException))
End If

End If

ExecRemoteGatewayCachedBusinessRule
When a cache flag and key is provided to the ExecRemoteGatewayBusinessRule BR API, this

method is used to invoke a previously cached method. This is intended to be used for high-

frequency remote business rules to avoid the performance impact of recompiling a remote

method on each invocation.

NOTE: Requires allowRemoteCodeExec = True on Smart Integration Connector

local gateway. If the previously cached method is not invoked after 60 minutes,

the remote cached method is purged.

Parameter details:

l si: SessionInfo object used to create connection objects

l cachedFunctionKey: Key of previously cached remote function to invoke

l functionArguments: Array of objects aligning to function / method parameters. Null /

Nothing if there are none required

Smart Integration Connector Guide 98

Business Rules

l remoteHost: Name of remote host to invoke operation. (Smart Integration Connector

Local Gateway Name)

l executionTimeOut: Timeout (in seconds) on the remote job

l Returns: RemoteRequestResultDto - Result of execution including the status and any

exceptions which may have occurred on the remote endpoint

Here is the rule in C#:

try
{
// Caches a SIC BR called GetDataFromDB on SIC Gateway called TestConnection
// and caches the function with the name GetDataFromDB with a cache key of GetDataFromDBCached

 RemoteRequestResultDto objRemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayBusinessRule
(si, "GetDataFromDB", null, "TestConnection", "RunOperation", " GetDataFromDBCached ", false, 90);

if (objRemoteRequestResultDto.RemoteResultStatus == RemoteMessageResultType.Success
 && objRemoteRequestResultDto.ResultSet != null
 && objRemoteRequestResultDto.ResultType == RemoteResultType.DataTable)

{

BRApi.ErrorLog.LogMessage(si, "Data Returned - Rows:" +
objRemoteRequestResultDto.ResultSet.Rows.Count);
 }

else
{
if (objRemoteRequestResultDto.RemoteException != null)
{
throw ErrorHandler.LogWrite(si, new XFException(si, objRemoteRequestResultDto.RemoteException));

 }
else
{

 BRApi.ErrorLog.LogMessage(si, "Remote Smart Integration Function Succeeded - no data/datatable
returned");
 }
 }

// Subsequent invocations of the remote BR can be run by specifying the endpoint and the cached
key name
 RemoteRequestResultDto objRemoteRequestResultDtoCached =
BRApi.Utilities.ExecRemoteGatewayCachedBusinessRule(si, " GetDataFromDBCached",null, "
TestConnection ", 90);

return null;
 }

catch (Exception ex)
{
throw ErrorHandler.LogWrite(si, new XFException(si, ex));

Smart Integration Connector Guide 99

Business Rules

}

Here is the rule in VB.NET:

Dim argTest(0) As Object
argTest(0) = "2023"

'Here we are telling it to specifically call a remote Smart Integration function called
'TestFileread at a remote gateway called TestConnection and caching the compiled
'result as a key called TestFileReadCache with a 90 second timeout
Dim objRemoteRequestResultDto As RemoteRequestResultDto =

BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "TestFileRead", argTest, " TestConnection ",
"DeleteOldFileData","TestFileReadCache", false, 90)

If (objRemoteRequestResultDto.RemoteResultStatus =
RemoteMessageResultType.RunOperationReturnObject) Then

'The delete method returns a true/false return type
Dim result As Boolean
' ObjectResultValue introduced in v7.4 to simplify obtaining the return value from a method that

doesn't return a
' Dataset/Datatable

 result = objRemoteRequestResultDto.ObjectResultValue

' Here we are invoking a compiled/cached method at a remote gateway called
' TestConnection using the key of TestFilereadCache with a 90 second timeout.

Dim objRemoteRequestResultDtoCached As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayCachedBusinessRule(si, "TestFileReadCache", argTest, "
TestConnection ", 90)

BRApi.ErrorLog.LogMessage(si, "File Deleted: " & result)
Else

If (Not (objRemoteRequestResultDto.remoteException Is Nothing)) Then
Throw ErrorHandler.LogWrite(si, New XFException(si,

objRemoteRequestResultDto.remoteException))
End If

End If

Smart Integration Connector Guide 100

Business Rules

ExecRemoteGatewayJob
There may be instances where a remote operation on the Smart Integration Connector Local

Gateway host would need to process and assemble data that may take several minutes to run.

In this situation, you could use this BR API to queue and run a remote business rule in an

asynchronous manner where the remote Smart Integration Connector Local Gateway host

returns a Job ID (GUID) that can later be used to obtain the job’s status or the results if the job

is complete. When invoking this method, if the RemoteMessageResultStatus is returned as

JobRunning (as shown in the example below), the RequestJobID is populated with the ID of

the queued job that can later be used to obtain status.

NOTE: Requires allowRemoteCodeExec = True on Smart Integration Connector

Local Gateway. There is a defined default limit of 30 minutes for remote jobs to

execute before the job is cancelled, and an overloaded version of

ExecremoteGatewayJob exists allowing the timeout to be provided, but can

never exceed 4 hours. This is not configurable and if this timeout is reached, the

status returned shows the timeout. If the result is not obtained within five

minutes after the job completes (using the GetRemoteGatewayJobStatus BR

API), the remote results are purged to ensure that result objects reclaim server

memory on the Smart Integration Service host.

Here is a basic overview of invoking a remote job and displaying the returned remote Job ID in

VB.NET.

NOTE: This is required to call back into GetRemoteJobStatus with the returned

ID to obtain the result:

Dim drillBackInfo As New DrillBackResultInfo

Smart Integration Connector Guide 101

Business Rules

Dim argInt As New XFSimpleObject(12)
argInt.Int32Value = 12
Dim argTest(1) As Object
argTest(0) = 100
argTest(1) = "test"

' Invoking a OneStream Business Rule as a remote job
Dim objRemoteRequestResultDto As RemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayJob(si,
"TestLongRunning", argTest, "ryantestconnection",String.Empty)
If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.JobRunning) Then
drillbackinfo.TextMessage = "Done " & objRemoteRequestResultDto.RequestJobID.ToString()
drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.TextMessage
Return drillBackInfo
End If

Here is the rule in VB.NET to invoke a job, obtain the job ID, and 'poll' until completion:

Try
Dim jobID As Guid
‘ Invoking a long-running Job with a Smart Integration Function called GetDataFromDB on SIC Gateway
called testConneciton

Dim objRemoteRequestResultDto As RemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayJob
(si, "GetDataFromDB", Nothing, "TestConnection",String.Empty)

' If Successful, the status is retuned indicating the job is running with the job ID – Use this
ID to interrogate if the job is compleed.

If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.JobRunning)
Then
 jobID = objRemoteRequestResultDto.RequestJobID
 BRApi.ErrorLog.LogMessage(si, "Remote Job Queued and Running - JobID: " & jobID.ToString())

' Example waiting 20 seconds for job to complete
For loopControl = 0 To 10

 System.Threading.Thread.Sleep(2000)
Dim objJobStatus As RemoteJobStatusResultDto = BRApi.Utilities.GetRemoteGatewayJobStatus(si,

JobID, " TestConnection ")

If (objJobStatus.RemoteJobState = RemoteJobState.Running)
 BRApi.ErrorLog.LogMessage(si, "Remote Job Still running - JobID: " & jobID.ToString())

Else If (objJobStatus.RemoteJobState = RemoteJobState.Completed)

' Checking the return type from the remote job
If (Not objJobStatus.RemoteJobResult.ResultSet Is Nothing) Then
Dim xfDT = New XFDataTable(si,objJobStatus.RemoteJobResult.ResultSet,Nothing,1000)

 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Datatable Returned - JobID: " &
jobID.ToString())

Return Nothing
Else If (Not objJobStatus.RemoteJobResult.ResultDataSet Is Nothing) Then
Dim xfDT = New XFDataTable(si,objJobStatus.RemoteJobResult.ResultDataSet.Tables

(0),Nothing,1000)
 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Dataset Returned - JobID: " &
jobID.ToString())

Smart Integration Connector Guide 102

Business Rules

Return Nothing
Else If objStatus.RemoteJobResult.ResultDataCompressed IsNot Nothing Then

 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Object Returned - JobID:
" & jobID.ToString())
Dim value As String = CompressionHelper.InflateJsonObject(Of String)(si,
objJobStatus.RemoteJobResult.ResultDataCompressed)
Brapi.ErrorLog.LogMessage(si, value)

Return Nothing
End If

Else If (objJobStatus.RemoteJobState = RemoteJobState.JobNotFound)
 BRApi.ErrorLog.LogMessage(si, "Remote Job Not Found - JobID: " & jobID.ToString())

Return Nothing
Else If (objJobStatus.RemoteJobState = RemoteJobState.RequestTimeOut)

 BRApi.ErrorLog.LogMessage(si, "Remote Job Timed Out - JobID: " & jobID.ToString())
Return Nothing
Else If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.Exception)

 BRApi.ErrorLog.LogMessage(si, "Exception During Exeuction of Job: " &
objRemoteRequestResultDto.RemoteException.ToString())

End If
Next

Else
' Exception occurred immediately during compile/initial run
If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.Exception)

 BRApi.ErrorLog.LogMessage(si, "Exception Executing Job: " &
objRemoteRequestResultDto.RemoteException.ToString())

Else
 BRApi.ErrorLog.LogMessage(si, "General Job Execution Error - State: " &
objRemoteRequestResultDto.RemoteResultStatus.ToString())

End If
End If

Return Nothing
Catch ex As Exception

Throw ErrorHandler.LogWrite(si, New XFException(si, ex))
End Try

Here is the rule in C# to invoke a job, obtain the job ID, and 'poll' until completion:

try
{
 Guid jobID;
 RemoteRequestResultDto objRemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayJob(si,
"GetDataFromDB", null, " TestConnection ",string.Empty);

if (objRemoteRequestResultDto.RemoteResultStatus == RemoteMessageResultType.JobRunning)
{

 jobID = objRemoteRequestResultDto.RequestJobID;
 BRApi.ErrorLog.LogMessage(si, "Remote Job Queued and Running - JobID: " + jobID.ToString());

// Example waiting 20 seconds for job to complete
for (int loopControl=0; loopControl<=10; loopControl++)

{

Smart Integration Connector Guide 103

Business Rules

 System.Threading.Thread.Sleep(2000);
 RemoteJobStatusResultDto objJobStatus = BRApi.Utilities.GetRemoteGatewayJobStatus(si,
jobID, " TestConnection");

if (objJobStatus.RemoteJobState == RemoteJobState.Running)
{

 BRApi.ErrorLog.LogMessage(si, "Remote Job Still running - JobID: " + jobID.ToString());
 }

else if (objJobStatus.RemoteJobState == RemoteJobState.Completed)
{

// Checking the return type from the remote job
if (objJobStatus.RemoteJobResult.ResultSet != null)

{
 XFDataTable xfDT = new XFDataTable(si,objJobStatus.RemoteJobResult.ResultSet,null,1000);
 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Datatable Returned - JobID: " +
jobID.ToString());

return null;
 }

else if (objJobStatus.RemoteJobResult.ResultDataSet != null)
{

 XFDataTable xfDT = new XFDataTable
(si,objJobStatus.RemoteJobResult.ResultDataSet.Tables[0],null,1000);
 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Dataset Returned - JobID:
" + jobID.ToString());

return null;
 }

else if (objJobStatus.RemoteJobResult.ObjectResultValue !=null)
{

 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Object Returned -
JobID: " + jobID.ToString());

return null;
 }

else if (objJobStatus.RemoteJobState == RemoteJobState.JobNotFound)
{

 BRApi.ErrorLog.LogMessage(si, "Remote Job Not Found - JobID: " +
jobID.ToString());

return null;
 }

else if (objJobStatus.RemoteJobState == RemoteJobState.RequestTimeOut)
{

 BRApi.ErrorLog.LogMessage(si, "Remote Job Timed Out - JobID: " + jobID.ToString());
return null;

 }
else if (objRemoteRequestResultDto.RemoteResultStatus ==

RemoteMessageResultType.Exception)
{

 BRApi.ErrorLog.LogMessage(si, "Exception During Exeuction of Job: "+
objRemoteRequestResultDto.RemoteException.ToString());

return null;
 }
 }
}
// End for loop
 }

else
{
// Exception occurring immediately during compile/initial run

Smart Integration Connector Guide 104

Business Rules

if (objRemoteRequestResultDto.RemoteResultStatus == RemoteMessageResultType.Exception)
 BRApi.ErrorLog.LogMessage(si, "Exception Executing Job: " +
objRemoteRequestResultDto.RemoteException.ToString());

else
 BRApi.ErrorLog.LogMessage(si, "General Job Execution Error - State: " +
objRemoteRequestResultDto.RemoteResultStatus.ToString());

return null;
 }
 }

catch (Exception ex)
{

throw ErrorHandler.LogWrite(si, new XFException(si, ex));
 }
return null;

ExecRemoteGatewayBusinessRule
This is a core BR API that can be used to remotely invoke Smart Integration functions on a

specified remote Smart Integration Connector Local Gateway host. The Smart Integration

Connector Local Gateway must have allowRemoteCodeExec set to True for this BR API to

invoke an operation successfully, otherwise the Smart Integration Connector Local Gateway

host returns a result indicating that remote code execution is disabled.

This method takes a previously authored Smart Integration function, written in VB.NET or C#,

in the OneStream application and passes it to the remote host for execution. With this BR API,

it is expected that remote calls should take no more than 2-3 minutes to return a result to the

caller as this BR API will block until a result is returned. If longer running or sync operations

are needed, consider using the execRemoteGatewayJob BR API.

NOTE: Requires allowRemoteCodeExec = True on Smart Integration Service

Parameter details:

Smart Integration Connector Guide 105

Business Rules

l si: SessionInfo object used to create connection objects

l brName: Name of the locally defined (within the OneStream Application scope) Smart

Integration function

l functionArguments: Array of objects aligning to function / method parameters. Null /

Nothing if there are none required.

l remoteHost: Name of remote host to invoke operation. (Smart Integration Connector

name)

l functionName: Name of the function in the Smart Integration function to invoke. If null or

empty, a function/method with the name RunOperation is expected to exist within the

authored code.

l (Optional) cachedFunctionKey: Name used to cache the remote function to avoid

recompiling the function on a subsequent call. This is optional and if missing or null the

function will not be cached.

l (Optional) forceCacheUpdate: Option indicating if a previously cached function should

be replaced with this version. When true, and an existing function is found with a name

specified in the cachedFunctionKey parameter, the BR is recompiled and recached.

This is useful for situations where a remote function is cached and a change was made.

l executionTimeOut: Timeout (in seconds) on the remote job (In 7.4, this is now an

optional parameter and defaults to 90 seconds if the parameter is missing.)

Here is a C# drill-back example:

DrillBackResultInfo drillBackInfo = new DrillBackResultInfo();
DataTable dtf = BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "SAP_Test", null, "gateway-SAP_
Europe",string.Empty).ResultSet;

Smart Integration Connector Guide 106

Business Rules

var xfDT = new XFDataTable(si, dtf, null, 1000);
drillBackInfo.DataTable = xfDT;
drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.DataGrid; return drillBackInfo;

Here is a VB.NETdrill-back example that invokes a remote business rule accepting 2

parameters:

Dim drillBackInfo As New DrillBackResultInfo
Dim argTest(1) As Object ' Creating an object array to package the method parameters
argTest(0) = 12 ' First parameter is an integer
argTest(1) = "test" ' Second parameter is a string

'Remote Smart Integration Function Signature: ' Public Shared Function RunOperation2(testval As
Integer, teststr As String) As ArrayList

'Invoking method RunOperation2 on endpoint testConnection passing in user defined parameters as an
array

Dim objRemoteRequestResultDto As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayBusinessRule
(si, "TestValueTypeParam", argTest, "testConnection","RunOperation2")

If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.RunOperationReturnObject)
Then
Dim returnVal As System.Collections.ArrayList returnVal =

objRemoteRequestResultDto.ObjectResultValue

'Simple demonstration without error checking to look at the first element of the arraylist
drillbackinfo.TextMessage =
"Completed! " & returnVal(0).ToString() drillBackInfo.DisplayType =
ConnectorDrillBackDisplayTypes.TextMessage
Return drillBackInfo
Else If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.Success)
' Demonstrating a 'pattern' whereby the caller can verify what the type is that's returned and
handle properly.
Dim xfDT = New XFDataTable(si,objRemoteRequestResultDto.resultSet,Nothing,1000)
drillBackInfo.DataTable = xfDT
drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.DataGrid
Return drillBackInfo
Else If (Not (objRemoteRequestResultDto.remoteException Is Nothing)) Then
Throw ErrorHandler.LogWrite(si, New XFException(si,objRemoteRequestResultDto.remoteException))
End If
Return Nothing
End If

Below is a TestFileRead Remote Business Rule function in C# Referenced by Examples

Below:

Smart Integration Connector Guide 107

Business Rules

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Common;
using System.Globalization;
using System.IO;
using System.Linq;
using System.Data.SqlClient;
using OneStreamGatewayService;

namespace OneStream.BusinessRule.SmartIntegrationFunction.GetDataFromDB
{

public class MainClass
{

public DataTable RunOperation()
{

 DataTable dataTableResults = new DataTable();
string connectionString, sql;

// The API Below is only available in 7.4 and allows the ability to
// Obtain a remotely defined connection string.

 connectionString = APILibrary.GetRemoteDataSourceConnection("RevenueMgmt");

 SqlConnection conn;
 conn = new SqlConnection(connectionStringconn.Open();
 sql = "Select * FROM InvoiceMaterialDetail";
 SqlCommand cmd = new SqlCommand(sql, conn);

var dbreader = cmd.ExecuteReader();
 dataTableResults.Load(dbreader);

return dataTableResults;
 }
 }
}

Remote function returning a scalar value (VB.NET) or object with parameters:

Dim argTest(0) As Object
argTest(0) = "2023"

'Here we are telling it to specifically call a remote Smart Integration Function called
TestFileRead at SIC Gateway

'called TestConnection with a method called DeleteOldFileData
Dim objRemoteRequestResultDto As

 RemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "TestFileRead",
argTest, "TestConnection", "DeleteOldFileData")

If (objRemoteRequestResultDto.RemoteResultStatus =
RemoteMessageResultType.RunOperationReturnObject) Then

'The delete method returns a true/false return type

Dim result As Boolean
'ObjectResultValue introduced in v7.4 to simplify obtaining the return
'value from a method that doesn't return a Dataset/Datatable

Smart Integration Connector Guide 108

Business Rules

 result = objRemoteRequestResultDto.ObjectResultValue

'Previous to v7.4, The result was returned in a compressed format and it is required that
'InfateJsonObject was invoked
'result = CompressionHelper.InflateJsonObject(Of Object)
'(si,objRemoteRequestResultDto.resultDataCompressed)

 BRApi.ErrorLog.LogMessage(si, "File Deleted: " & result)
Else

If (Not (objRemoteRequestResultDto.remoteException Is Nothing)) Then
Throw ErrorHandler.LogWrite(si, New XFException
(si, objRemoteRequestResultDto.remoteException))

End If
End if

Remote function returning a scalar type/object (C#):

try
{

object[] argTest = new object[1];
 argTest[0] = "2023";

'Here we are telling it to specifically call a remote Smart Integration Function called
TestFileRead at SIC Gateway

'called TestConnection with a method called DeleteOldFileData

 RemoteRequestResultDto objRemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "TestFileRead", argTest, " TestConnection",
"DeleteOldFileData");

if (objRemoteRequestResultDto.RemoteResultStatus ==
RemoteMessageResultType.RunOperationReturnObject
 && objRemoteRequestResultDto.ObjectResultValue != null)

bool result;
if (bool.TryParse(objRemoteRequestResultDto.ObjectResultValue.ToString(), out result))

 BRApi.ErrorLog.LogMessage(si, "File Deleted: " + result.ToString());
else

 BRApi.ErrorLog.LogMessage(si, "Returned a non-boolean value");
else

if (objRemoteRequestResultDto.RemoteException != null)
throw ErrorHandler.LogWrite(si, new XFException(si,

objRemoteRequestResultDto.RemoteException));

return null;
catch (Exception ex)

throw ErrorHandler.LogWrite(si, new XFException(si, ex))
 End Try

Remote function returning a datatable (C#):

Smart Integration Connector Guide 109

Business Rules

try
{
// Here we are telling it to specifically call a remote Smart Integration Function called

GetDataFromDB at SIC Gateway called TestConnection with a method called RunOperation
 RemoteRequestResultDto objRemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayBusinessRule
(si, "GetDataFromDB", null, "TestConnection", "RunOperation");

if (objRemoteRequestResultDto.RemoteResultStatus == RemoteMessageResultType.Success
 && objRemoteRequestResultDto.ResultSet != null
 && objRemoteRequestResultDto.ResultType == RemoteResultType.DataTable)

{

 BRApi.ErrorLog.LogMessage(si, "Data Returned - Rows:" +
objRemoteRequestResultDto.ResultSet.Rows.Count);
 }

else
{

if (objRemoteRequestResultDto.RemoteException != null)
{

throw ErrorHandler.LogWrite(si, new XFException(si,
objRemoteRequestResultDto.RemoteException));
 }

else
{

 BRApi.ErrorLog.LogMessage(si, "Remote Smart Integration Function Succeeded - no
data/datatable returned");
 }
 }

return null;
 }
catch (Exception ex)
{

throw ErrorHandler.LogWrite(si, new XFException(si, ex));
}

GetRemoteDataSourceConnection
This remote business rule will return the connection string associated with a Local Gateway

Configuration Data Source.

NOTE: Requires allowRemoteCodeExec = True on Smart Integration Local

Gateway.

Parameter details:

Smart Integration Connector Guide 110

Business Rules

l Data Source: The name of the Local Gateway Configuration Data Source.

Here is the rule in VB.NET :

Imports System
Imports System.Collections.Generic
Imports System.Data
Imports System.Data.Common
Imports System.Globalization
Imports System.IO
Imports System.Linq
Namespace OneStream.BusinessRule.SmartIntegrationFunction.GetRemoteDataSource_VB

Public Class MainClass
Public Shared Function RunOperation() As DataTable

Dim dataTableResults As New DataTable

' Get the remotely defined connection String
Dim connectionString As String =

OneStreamGatewayService.APILibrary.GetRemoteDataSourceConnection("Sales_Data1");

Dim conn As SqlConnection = New SqlConnection(connectionString)
' Insert custom code

Return dataTableResults
End Function

End Class
End Namespace

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Common;
using System.Globalization;
using System.IO;
using System.Linq;
using System.Data.SqlClient;

namespace OneStream.BusinessRule.SmartIntegrationFunction.GetRemoteDataSourceSample
{

public class MainClass
{

public DataTable RunOperation()
{

DataTable dataTableResults = new DataTable();

// Get the remotely defined connection string
string connectionString =

OneStreamGatewayService.APILibrary.GetRemoteDataSourceConnection("Sales_Data1");

SqlConnection conn = new SqlConnection(connectionString);

Smart Integration Connector Guide 111

Business Rules

// Insert custom code

return dataTableResults;
}

}
}

GetRemoteGatewayJobStatus
This BR API returns the status or the results of a previously remotely queued job invoked

against a specified Smart Integration Connector Local Gateway host.

NOTE: Requires allowRemoteCodeExec = true on Smart Integration Service.

Parameter details:

l si: SessionInfo object used to create connection objects

l JobID: GUID of remote job ID returned upon successful call to ExecRemoteGatewayJob

l remoteHost: Name of remote host to invoke operation (Smart Integration Connector

Name)

The sample below invokes a job as part of a data management job inside a OneStream

extenderrule. The example demonstrates a simple Smart Integration Function that sleeps 2

seconds 1000 times in a loop simulating a long running task. The corresponding extender rule

illustrates how this long running function can be invoked as a job, returning a job ID and

subsequently polled until it's completed.

Here is the 'long running' Smart Integration Function in VB.NET:

Imports System

Smart Integration Connector Guide 112

Business Rules

Imports System.Collections.Generic
Imports System.Data
Imports System.Data.Common
Imports System.Globalization
Imports System.IO
Imports System.Linq
Imports System.Threading

Namespace OneStream.BusinessRule.SmartIntegrationFunction.LongRunningTest
 Public Class MainClass
 Public Shared Function RunOperation() As DataTable
 For i As Integer = 1 To 1000
 thread.Sleep (2000)
 Next

 Dim result As String
 result = OneStreamGatewayService.APILibrary.GetSmartIntegrationConfigValue("test")

 Dim Table1 As DataTable
 Table1 = New DataTable("TableName")

 Dim column1 As DataColumn = New DataColumn("SettingName")
 column1.DataType = System.Type.GetType("System.String")

 Table1.Columns.Add(column1)

 Table1.Rows.Add(result)
 Return Table1

 End Function
 End Class
End Namespace

It would be typical to invoke long running jobs as part of a Data management/Extender Rule

and the code below is an example on how this could be accomplished inVB.NET:

Public Function Main(ByVal si As SessionInfo, ByVal globals As BRGlobals, ByVal api As Object, ByVal
args As ExtenderArgs) As Object
Try
Dim jobID As Guid
Dim objRemoteRequestResultDto As RemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayJob
(si, "LongRunningTest", Nothing, "testConnection",String.Empty)

If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.JobRunning) Then
jobID = objRemoteRequestResultDto.RequestJobID BRApi.ErrorLog.LogMessage
(si, "Remote Job Queued and Running - JobID: " & jobID.ToString())
'Example waiting 20 seconds for job to complete
For loopControl = 0 To 10
 System.Threading.Thread.Sleep(2000)

Dim objJobStatus As RemoteJobStatusResultDto = BRApi.Utilities.GetRemoteGatewayJobStatus(si, JobID,

Smart Integration Connector Guide 113

Business Rules

"testconnection2")
If (objJobStatus.RemoteJobState = RemoteJobState.Running)
BRApi.ErrorLog.LogMessage(si, "Remote Job Still running - JobID: " & jobID.ToString())
Else If (objJobStatus.RemoteJobState = RemoteJobState.Completed)
' Checking the return type from the remote job
If (Not objJobStatus.RemoteJobResult.ResultSet Is Nothing) Then
Dim xfDT = New XFDataTable(si,objJobStatus.RemoteJobResult.ResultSet,Nothing,1000)
BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Datatable Returned - JobID: " & jobID.ToString
())
Return Nothing
Else If (Not objJobStatus.RemoteJobResult.ResultDataSet Is Nothing)
Then Dim xfDT = New XFDataTable(si,objJobStatus.RemoteJobResult.ResultDataSet.Tables
(0),Nothing,1000)
BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Dataset Returned - JobID: " & jobID.ToString
()) Return Nothing
Else If (Not objJobStatus.RemoteJobResult.ObjectResultValue Is Nothing) Then
BRApi.ErrorLog.LogMessage
(si, "Remote Job Completed - Object Returned - JobID: " & jobID.ToString())
Return Nothing
End If
Else If (objJobStatus.RemoteJobState = RemoteJobState.JobNotFound) BRApi.ErrorLog.LogMessage
(si, "Remote Job Not Found - JobID: " & jobID.ToString()) Return Nothing
Else If (objJobStatus.RemoteJobState = RemoteJobState.RequestTimeOut) BRApi.ErrorLog.LogMessage
(si, "Remote Job Timed Out - JobID: " & jobID.ToString()) Return Nothing
Else If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.Exception)
BRApi.ErrorLog.LogMessage(si, "Exception During Exeuction of Job: " &
objRemoteRequestResultDto.RemoteException.ToString())
End If
Next
Else ' Exception occuring immediately during compile/initial run
If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.Exception)
BRApi.ErrorLog.LogMessage(si, "Exception Executing Job: " &
objRemoteRequestResultDto.RemoteException.ToString())
Else
BRApi.ErrorLog.LogMessage(si, "General Job Execution Error - State: " &
objRemoteRequestResultDto.RemoteResultStatus.ToString())
End If
End If
Return Nothing
Catch ex As Exception
Throw ErrorHandler.LogWrite(si, New XFException(si, ex))
End Try
End Function

GetSmartIntegrationConfigValue
This BR API allows access to the Local Gateway Local Application Data Settings. Accessing

the remotely stored secret or customer-defined configuration values is done using a new

"Remote" equivalent of the BR API namespace. This feature can be used to:

Smart Integration Connector Guide 114

Business Rules

l Reference configuration parameters in a remote business rule running on a Smart

Integration Connector Local Gateway Server

l Store credentials to network resources allowing the developer of remote business rules

to reference values stored in the configuration file instead of having them hard-coded

and viewable by anyone with permission to edit a business rule.

These configuration values are defined and edited using the Smart Integration Connector

Local Gateway Configuration Utility. The API used to obtain these values is demonstrated in

the full business rule example below:

NOTE: Requires allowRemoteCodeExec = True on Smart Integration Local

Gateway.

Here is the rule in C#:

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Common;
using System.Globalization;
using System.IO;
using System.Linq;
using System.Data.SqlClient;

namespace OneStream.BusinessRule.SmartIntegrationFunction.GetRemoteDataSourceSample
{

public class MainClass
{

public DataTable RunOperation()
{

 DataTable dataTableResults = new DataTable();

// Get the remotely defined connection string
string connectionString =

OneStreamGatewayService.APILibrary.GetRemoteDataSourceConnection("Sales_Data1");

 SqlConnection conn = new SqlConnection(connectionString);
// Insert custom code

return dataTableResults;

Smart Integration Connector Guide 115

Business Rules

 }
 }
}

Here is another example in VB.NET:

Imports System
Imports System.Data
Imports System.Data.Common
Imports System.IO
Imports System.Collections.Generic
Imports System.Globalization
Imports System.Linq
Imports Microsoft.VisualBasic
Imports OneStream.Shared.Wcf
Imports OneStreamGatewayService

Namespace OneStream.BusinessRule.SmartIntegrationFunction.SecretTester

Public Class MainClass
Public Shared Function RunOperation() as bool

Dim result As String
' APILibrary is the class containing new remote BRAPI methods
' GetSmartIntegrationConfigValue returns the string value of a found configuration
' element -- returns empty string if the specified key is not found

 result = APILibrary.GetSmartIntegrationConfigValue("test")
return true

End Function
End Class
End NameSpace

GetGatewayConnectionInfo
From a OneStream business rule, you can invoke this API to obtain gateway details such as:

l GatewayName: Name of the remote gateway

l GatewayVersion: Version of the Smart Integration Connector Gateway Service running

on the remote host

Smart Integration Connector Guide 116

Business Rules

l RemoteGatewayPortNumber: Bound Port at Gateway, the port of the remote service

this direct connection is associated with.

l RemoteGatewayHost: Name of the remote host associated with the direct connection.

l OneStreamPortNumber: Bound Port in OneStream, the port number defined within

OneStream that refers/maps to the specified direct connection.

l SmartIntegrationGatewayType: Type of the Smart Integration Connection (0=Database

Connection, 1=Direct Connection)

This API is useful for direct connections where the port number is required before connecting

to remote services such as sFTP or remote Web APIs because each endpoint defined in

OneStream to Smart Integration Connector Local Gateways has a different port number and

would need to be known by the business rule developer at design time. This API makes it easy

to look up the remote port by knowing the name of the direct connection defined in

OneStream. It returns other useful information outlined below:

Here is the rule in C#:

GatewayDetails gatewayDetailInformation = BRApi.Utilities.GetGatewayConnectionInfo(si,
"democonnection");
int oneStreamPortNumber = gatewayDetailInformation.OneStreamPortNumber;

Dim objGatewayDetails As GatewayDetails = BRApi.Utilities.GetGatewayConnectionInfo(si,
"democonnection")

 sessionOpts.PortNumber = objGatewayDetails.OneStreamPortNumber

Imports System
Imports System.Collections.Generic

Smart Integration Connector Guide 117

Business Rules

Imports System.Data
Imports System.Data.Common
Imports System.Globalization
Imports System.IO
Imports System.Linq
Imports System.Windows.Forms
Imports Microsoft.VisualBasic
Imports OneStream.Finance.Database
Imports OneStream.Finance.Engine
Imports OneStream.Shared.Common
Imports OneStream.Shared.Database
Imports OneStream.Shared.Engine
Imports OneStream.Shared.Wcf
Imports OneStream.Stage.Database
Imports OneStream.Stage.Engine
Imports WinSCP

Namespace OneStream.BusinessRule.Extender.SFTP_Example
Public Class MainClass

Public Function Main(ByVal si As SessionInfo, ByVal globals As BRGlobals, ByVal api
As Object, ByVal args As ExtenderArgs) As Object

Try

' Setup the objects to read Gateway Details from BRAPIs
Dim objGatewayDetails As GatewayDetails = BRApi.Utilities.GetGatewayConnectionInfo(si,

"WinSCP_Gateway")
Dim objRemoteRequestResultDto As RemoteRequestResultDto =

BRApi.Utilities.ExecRemoteGatewayBusinessRule
(si, "SFTP_Password", Nothing, "rochester_gateway",String.Empty,"SFTP_Password", False,

600)

' Setup session options
Dim sessionOptions As New SessionOptions
With sessionOptions

 .Protocol = Protocol.Sftp
 .HostName = "localhost"

'HostName in this instance is in refrence to OneStream and will always be localhost.
 .UserName = "onestreamtest"

'sFTP server UserName
'.Password = "**********"
'sFTP server Password

 .Password = CompressionHelper.InflateJsonObject(Of String)
(si,objRemoteRequestResultDto.resultDataCompressed)

'result of remote business rule to provide password from Local Gateway Server
'.PortNumber = 54321 'Bound Port in OneStream

 .PortNumber = objGatewayDetails.OneStreamPortNumber 'use BRAPI to populate Port
Number
 .SshHostKeyFingerprint = "*****************************" 'SSH Host Key from sFTP
host

End With

Using session As New Session
' Connect

 session.Open(sessionOptions)

Smart Integration Connector Guide 118

Business Rules

' Get the filepath
' BatchHarvest in this example is File Share / Applicaitons / GolfStream / Batch /

Harvest
Dim fileUPPath As String = BRAPi.Utilities.GetFileShareFolder(si,

FileShareFolderTypes.BatchHarvest, Nothing)
Dim fileDNPath As String = BRAPi.Utilities.GetFileShareFolder(si,

FileShareFolderTypes.BatchHarvest, Nothing)

' Upload or download files
Dim transferOptions As New TransferOptions

 transferOptions.TransferMode = TransferMode.Binary

Dim transferResult As TransferOperationResult
' Upload

 fileUPpath = fileUPPath & "\SFTP_TEST_UPLOAD.txt"
 transferResult = session.PutFiles(fileUPpath, "/", False, transferOptions)

'Throw on any error
 transferResult.Check()

' Download
 fileDNpath = fileDNPath & "\SFTP_TEST_DOWNLOAD.txt"
 transferResult = session.GetFiles("\SFTP_TEST_DOWNLOAD.txt", fileDNpath, False,
transferOptions)

'Throw on any error
 transferResult.Check()

End Using

Return Nothing
Catch ex As Exception

Throw ErrorHandler.LogWrite(si, New XFException(si, ex))
Return Nothing

End Try

End Function
End Class

End Namespace

Incompatible Business Rules
The following business rules are not compatible with Smart Integration Connector:

Smart Integration Connector Guide 119

Business Rules

l CreateSAPConnection

l BRApi.Database.SaveCustomDataTable

If you attempt to use these business rules you will run into an error.

Smart Integration Connector Guide 120

Business Rules

Troubleshooting
This section provides help on addressing errors in Smart Integration Connector.

Error Log
To view the error log, click System > Logging > Error Log.

Every five minutes, by default, the Smart Integration Connector tries to connect to an

established Smart Integration Connector local gateway from each application server used in a

deployment. If the gateway is unable to connect, it times out and adds an error to the error log.

These errors are recorded in the OneStream error log along with other errors related to the

OneStream application. You can configure the interval at which OneStream application

servers monitor this gateway from 1 minute to 1440 minutes (1 day) to reduce the volume of

logged failures for infrequently online test or validation environments.

NOTE: It is recommended to increase the time intervals for queries that run

longer than five minutes. For example, if you have a query that runs ten minutes

long, you need to set your time interval to above ten minutes (such as fifteen

minutes). Time intervals can be adjusted from System > Smart Integration

Connector > Your connection > Gateway failures reporting interval (min).

Smart Integration Connector Guide 121

Troubleshooting

Common Errors
Memory Issues
If you receive any of the following errors, increase the memory in your Smart Integration

Connector Local Gateway Server. For queries returning over 1 million records, 32 GB or more

RAM is recommended.

l "Error while copying content to a stream. Received an unexpected EOF or 0 bytes from

the transport stream."

l "An error occurred while sending the request. The response ended prematurely."

Parallel Processing
There is currently an issue that may cause failures or errors when processing parallel tasks

using the Smart Integration Connector. If you receiver this error, here is a temporary

workaround, reducing the number of parallel tasks being processed at once can help mitigate

these issues. Our development team is actively working on a resolution for a future release.

Smart Integration Connector Guide 122

Troubleshooting

Gateway Version is empty
If your gateway is reporting online, is of type "Database Connection" and the Version is empty,

verify with your IT Admin that port 443 is fully open outbound between the SIC Local Gateway

Server and the Azure Relay.

Custom Data Source Names
You may not see the Data Source Names populate when setting up the custom connection

with a new gateway. It is recommended to wait for five minutes from creating a new gateway to

when you create the custom connection.

Smart Integration Connector Guide 123

Troubleshooting

Array cannot be null Error
You receive the error: "Array cannot be null. (Parameter 'bytes')" or

"System.AggregateException - System.NullReferenceException: Object reference not set to

instance of object"

NOTE: CompressionHelper.InflateJsonObject is now automatically executed as

part of remote calls resulting in serialized .NET types returned from the Smart

Integration Connector Gateway. Update any SIC related business rules

accordingly.

Previously, it was required that a OneStream BR developer invoking a remote

Smart Integration Function be aware of the data type returned and convert

accordingly after the result is returned. An example where the returned result

was a byte array involved code that appeared as follows:

Example:

bytesFromFile = CompressionHelper.InflateJsonObject(Of System.Byte())
(si,objRemoteRequestResultDto.resultDataCompressed)
'The Smart Integration Connector Gateway now provides this type information back to OneStream
'and streamlines this conversion process using a newly added property called
'ObjectResultValue which is populated.
'When invoking the same operation shown above that previously required
'the type to be converted, a BR developer can do the following:
bytesFromFile = objRemoteRequestResultDto.ObjectResultValue

Opening and Saving Configuration Errors
You may receive an error opening or saving your OneStream Local Gateway Configuration

after installing Oracle Data Provider for .NET.

Smart Integration Connector Guide 124

Troubleshooting

You must comment out the following line <!--<add name="Oracle Data Provider for .NET"

invariant="Oracle.DataAccess.Client" description=".Net Framework Data Provider for Oracle"

type="Oracle.DataAccess.Client.OracleClientFactory, Oracle.DataAccess" />--> when editing

your OneStreamLocalGatewayConfiguration.exe.config to resolve this error.

Your configuration should look similar to this:

<DbProviderFactories>
<add name="Npgsql Data Provider" invariant="Npgsql" description="Data Provider for

PostgreSQL" type="Npgsql.NpgsqlFactory, Npgsql" />
<add name="MySQL Data Provider" invariant="MySql.Data.MySqlClient" description=".Net Framework

Data Provider for MySQL" type="MySql.Data.MySqlClient.MySqlClientFactory, MySql.Data" />
<!--<add name="Oracle Data Provider for .NET" invariant="Oracle.DataAccess.Client"

description=".Net Framework Data Provider for Oracle"
type="Oracle.DataAccess.Client.OracleClientFactory, Oracle.DataAccess" />-->

Incorrect or Missing Library References
During compilation of remote business rules using .NET DLLs such as the ERPConnect

Library to interface with SAP, incorrect or missing library references will result in an error

similar (Smart Integration Connector compile error) to the image below.

Smart Integration Connector Guide 125

Troubleshooting

Script Error During Upgrade
During upgrades, you may run into the error "a script required for this install to complete could

not be run." The action to resolve this error is to rerun the Smart Integration Connector

installer. If you continue to see this error during upgrades, contact OneStream support.

Data Returned as a String
Occasionally, data types can return as a string when you are expecting to see data in the

original source format. Smart Integration Connector transfers data in Apache Parquet format

from the Local Gateway Service to OneStream. If you are transferring a data type that is

unsupported by parquet, the data converts and returns as string. You will need to add logic to

re-covert the string to the desired and supported data type if needed.

In certain cases, if you receive the error "The method or operation is not implemented" then

you can use a remote business rule to transfer data. This occurs when returning the varbinary

(max) datatype.

Smart Integration Connector Guide 126

Troubleshooting

Manual Start and Stop
If you run into errors with the service, you may need to manually stop and restart the service.

This can be accomplished in the GUI-based Services control manager as shown below or by

using the command-line/PowerShell. The name of the service when using command line tools

is "OneStreamSmartIntegration"

Using the Windows Service Control Manager:

1. Open Services from your Windows start menu.

2. Right-click on OneStream Smart Integration Connector Gateway.

Smart Integration Connector Guide 127

Troubleshooting

3. Select Stop.

4. Right-click again and select Start.

Using an elevated command-prompt:

1. net stop OneStreamSmartIntegration

2. net start OneStreamSmartIntegration

Using an elevated PowerShell prompt:

1. stop-service -ServiceName OneStreamSmartIntegration

2. start-service -ServiceName OneStreamSmartIntegration

Remote Endpoint Not Found/Could Not
Decrypt
To troubleshoot the errors "Remote Endpoint Not Found" or "Could not decrypt connection

string on SIC Gateway Connection: [Gateway Name]", check your service account

permissions. The service account used will require local administrative rights to access

resources on the Windows server, such as the machine certificate store and private keys used

for encryption.

Connections requiring a Signed Certificate
For connections that require a signed certificate in order to establish a connection, then a

Certificate Authority (CA) needs to be accessible from the Smart Integration Connector Local

Gateway Server in order to function.

For Database Connections - CA needs to be accessible from the SIC Local Gateway Server.

Smart Integration Connector Guide 128

Troubleshooting

For Direct Connections - CA needs to be publicly accessible from OneStream.

Trusted Certificate Chain
If you are using Smart Integration Functions and set the SQL Server connection string within

the function, you may receive the following error:

A connection was successfully established with the server, but then an error occurred during

the login process. (provider: SSL provider, error: 0 - The certificate chain was issued by an

authority that is not trusted.)

To resolve this error, include TrustServerCertificate=True; to your connection string within

the function.

Gateway Unable to Connect
If your Gateway cannot connect, check your Smart Integration Connector error log for:

[2023-10-04 07:09:59 INF] Starting Listener for: <site name>.servicebus.windows.net

[2023-10-04 07:10:00 ERR] Unable to connect: Generic: Ip has been prevented to connect to

the endpoint.

Smart Integration Connector Guide 129

Troubleshooting

To resolve this issue, verify that the IP addresses in your Whitelisting to the Azure Relay is set

up properly. See Advanced Networking and Whitelisting.

Communication Error
If you see the following error in the Windows Service Log, it means that you have a

mismatched WebAPIKey. This could occur if the WebAPI key is changed in OneStream and

the configuration for the Smart Integration Local Gateway service is not exported from

OneStream and re-imported into the Local Gateway Server service using the configuration

utility.

[14:13:36 INF] HTTP Request with invalid API key

You can resolve this error by matching the WebAPIKey in the configuration utility.

NOTE: If the value is changed, you must restart the service.

Smart Integration Connector Guide 130

Troubleshooting

	Revision History
	About This Guide
	Benefits
	Common Understanding
	OneStream Client Application Terms
	OneStream Local Gateway Configuration Terms

	Architecture
	Additional Considerations

	Requirements
	OneStream Smart Integration Connector Environment Setup
	Advanced Networking and Whitelisting

	Upgrade Smart Integration Connector
	Upgrade from

	Migration from VPN Considerations
	Setup and Installation
	Smart Integration Connector Setup
	Gateway Terms
	Local Gateway Server Installation

	Create a New Gateway
	Create a Database Connection
	Create a Direct Connection

	Export and Import the Gateway Configuration
	New Gateway Key Generation

	Create a Local Gateway Connection to a Data Source
	Microsoft SQL Server
	MySQL Data Provider
	Oracle Database Examples
	PostgreSQL (Npgsql Data Provider)
	OleDb Data Provider
	ODBC Data Provider
	(Optional) Remove UserID and Passwords by Integrated Security
	Microsoft Entra Authentication

	Test the Gateway
	Restart OneStream Smart Integration Connector Gateway
	Redundant and Fail-over Gateways
	Create a Redundant or Fail-over Gateway

	Define Custom Database Connections in OneStream System Configuration Setup
	Smart Integration Additional Settings
	Local Application Data Settings
	Referenced Assemblies Folder
	Log Settings

	Advanced Networking and Whitelisting
	Whitelist the Azure Relay to your Firewall
	Whitelist traffic to the Azure Relay

	Use Smart Integration Connector
	Examples
	Data Adapters Example
	SQL Table Editor Example
	Grid View Example
	Perform a Drill Back
	Perform a Write Back

	Support for sFTP
	Transferring Files from Local FileShare
	Step 1 - Setup the Remote Server / Remote Share
	Step 2 - Pull file from Extender Business Rule
	Step 3 - Automate from Data Management / Task Scheduler

	Obtain Data through a WebAPI
	Single WebAPI Connection
	Multiple WebAPI Connections

	Support for DLL Migration
	Support for ERPConnect (SAP)

	Business Rules
	ExecRemoteGatewayRequest
	ExecRemoteGatewayCachedBusinessRule
	ExecRemoteGatewayJob
	ExecRemoteGatewayBusinessRule
	GetRemoteDataSourceConnection
	GetRemoteGatewayJobStatus
	GetSmartIntegrationConfigValue

	GetGatewayConnectionInfo
	Incompatible Business Rules

	Troubleshooting
	Error Log
	Common Errors
	Memory Issues
	Parallel Processing
	Gateway Version is empty
	Custom Data Source Names
	Array cannot be null Error
	Opening and Saving Configuration Errors
	Incorrect or Missing Library References

	Script Error During Upgrade
	Data Returned as a String

	Manual Start and Stop
	Remote Endpoint Not Found/Could Not Decrypt
	Connections requiring a Signed Certificate
	Trusted Certificate Chain
	Gateway Unable to Connect
	Communication Error

