
Table Views Guide

8.5.0 Release



Copyright © 2024 OneStream Software LLC. All rights reserved.

Any warranty with respect to the software or its functionality will be expressly given in the
Subscription License Agreement or Software License and Services Agreement between
OneStream and the warrantee. This document does not itself constitute a representation or
warranty with respect to the software or any related matter.

OneStream Software, OneStream, Extensible Dimensionality and the OneStream logo are
trademarks of OneStream Software LLC in the United States and other countries. Microsoft,
Microsoft Azure, Microsoft Office, Windows, Windows Server, Excel, Internet Information
Services, Windows Communication Foundation and SQL Server are registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. DevExpress is a
registered trademark of Developer Express, Inc. Cisco is a registered trademark of Cisco
Systems, Inc. Intel is a trademark of Intel Corporation. AMD64 is a trademark of Advanced Micro
Devices, Inc. Other names may be trademarks of their respective owners.



Table of Contents

Table Views Spreadsheet and Excel Add-In 1

Overview 2

Technical Features and Setup 3

Restrictions 3

Table View Sizing 5

Table Views Spreadsheet/Excel Ribbon Button 5

Table View Business Rules 8

Spreadsheet Function Types 8

Processing Order 9

Using Parameters 9

Can Modify Data 10

Table View Conditions 11

Table View Sources 11

Table View Business Rule Example 12

GetTableView Function Type 12

Incorporating Parameters 22

Using XFTV Named Ranges 22

Table Views Guide i

Table of Contents



Security 26

Summary 29

Sample Table View Rules File 30

Table Views Guide ii

Table of Contents



Table Views Spreadsheet and Excel Add-

In

The primary purpose of Table Views is to provide a method for accessing or updating

relational data. This data is presented in a dashboard or inside the Excel Add-In. The use

of Table Views enables the designer to work in a more flexible environment to design a

form or data collection tool.

Table Views are not alternatives to other tools, such as the SQL Table Editor or Grid

Viewer, Dashboard Components.

Key Use:

l Designed to collect records from relational tables, or other sources

l Present the information in the Spreadsheet format

l Utilize client-side functionality, found in the Spreadsheet tool, such as calculations

and pick-list validation lists

l Table View Business Rules can be designed to manage the column field records,

such as updates, inserts and deletes.

Design Considerations:

l The current functionality is designed to update records in target tables

l Controlling elements must be designed into the Table View Business Rule by the

creator to ensure data integrity, security and performance

Table View Size Considerations:

Table Views Guide 1

Table Views Spreadsheet and Excel Add-In



l Table Views depends upon the number of rows and row content

l Paging is not supported. Therefore, all rows and content must be returned

l Performance testing and design expectations is to support approximately 8000 KB

of data per Table View.

Overview

A Table View definition for the Windows Application Spreadsheet Tool or Excel Add-In is

defined in a Business Rule.  The Administrator designing the rule can define the rows and

columns which should be returned to the worksheet from the source table presented in

the Table View.

The Table View Business Rule can collect data from multiple data sources. For example, a

single worksheet can display a Table View which collects data from two or more sources.

The Administrator has full control over the write back “save” process through Business

Rules. When designing the Table View Business Rule, the BRAPI Authorization functions

should be designed into the Business Rule to control access to the viewing or modifying

the data. This can be applied to the entire table or to specific cells. A workbook can

contain multiple Table Views. These can be on the same worksheet or across worksheet

pages.

A single Business Rule file can be used to define multiple Table Views by calling the

Business Rule argument, TableViewName. Additionally, a single named range can be

used to manage table data cells within the Spreadsheet and Excel Add-In using user

defined named ranges (XFTV_*).

Table Views Guide 2

Table Views Spreadsheet and Excel Add-In



Technical Features and Setup

This section will review the various functional elements of the Table Views feature. The

design of Table Views involves having a thorough understanding of the source and target

tables to be viewed or modified. TheAdministrator developing the Table View will also

be required to understand the requirements needed for the final Spreadsheet form to

design the Business Rule at its most granular level. This will allow the Business Rules to be

designed to the most restrictive level which will maximize security and gain the highest

performance.

Restrictions

Table Views should never read or write to OneStream Application controlling tables, such

as Data Tables, Cube Tables or Log Tables. 

l AppProperty*

l Attachment*

l Audit*

l Data*

l CalcStatus*

l Certify*

l Confirm*

l Cube*

l Dashboard*

l DataAttachment*

Table Views Guide 3

Technical Features and Setup



l DataCellDetail*

l DataEntry*

l DataMgmt*

l DataRecord*

l DataUnit*

l Dim*

l FileContents*

l FileInfo*

l Folder*

l Form*

l FxRate*

l ICMatchStatus*

l Journal*

l Member*

l Parser*

l Relationship*

l SecRoles*

l Stage*

l System*

l Taskflow*

l Time*

Table Views Guide 4

Technical Features and Setup



l Workflow*

Table View Sizing

The output interface to the Table View Business Rule is the OneStream Windows

Application Spreadsheet and Excel Add-In.

Table Views should not be considered as a replacement for other Dashboard tools used

with database tables, such as the SQLTable Editor or theGrid View components which

support very large tables.

The Spreadsheet tool and Excel Add-In does not have a paging function to manage very

large data sets. Therefore, careful testing is recommended to verify the size and

performance of the records being managed with Table Views.

A significant impact on the performance of Table Views is the cell content. Along with

the physical number of rows, the content contained in the cells can dramatically affect

performance. The cell content is the key factor on the impact of the ultimate size on disk.

Table Views Spreadsheet/Excel Ribbon Button

Table Views is a OneStream Windows Application Spreadsheet and Excel Add-In

feature used to assign a Spreadsheet Business Rule to a worksheet.  All Table Views are

derived through the definition of a Business Rule, and only Administrators have the rights

to create Business Rules. 

Table Views Guide 5

Technical Features and Setup



1. Open the OneStream Windows Application and select Tools/Spreadsheet or

Open your Excel Add-In.

2. Select an available cell to begin the Table View range.

3. From theOneStream tool bar, choose the Table Views button.

4. Choose theAdd button.  Selecting ellipsis button from the Table View Business

Rule field allows browsing the available Business Rules.  The selection will

automatically assign theName and Refers To cell intersection.  Only Spreadsheet

type Business Rules will render as a Table View.

Table Views Guide 6

Technical Features and Setup



5. The Table View will render in the worksheet and is associated with a named range.

6. Choosing the Refresh options will retrieve the most current results from the source

table.

Table Views Guide 7

Technical Features and Setup



Table View Business Rules

Access to Table Views in Spreadsheet and Excel Add-In is limited to the Spreadsheet

Business Rule Type.The purpose of the Business Rule is to establish the source data

records to be displayed. The ability to save a record or field within a record is also

completely defined within the Business Rule. The Table View Business Rules also support

Parameters to enable the resulting Worksheet to be included in complex Dashboards.

Spreadsheet Function Types

l GetCustomSubstVarsInUseUsed to define the interaction with OneStream

Dashboard Parameters

l GetTableViewUsed to define the source(s) for the Table View. 

l SaveTableView This function defines the table or cell intersection that should be

written to a target database table

Table Views Guide 8

Technical Features and Setup



Processing Order

The Spreadsheet Function Types are designed to manage the processes within a

common Dashboard environment.

1. GetCustomSubstitutionVariables is executed first. 

a. If the defined Parameter is contained within the Dashboard, the selection will

act as a bound parameter and will be passed into the business rule.

b. If the defined Parameter is not contained within the Dashboard, it will

run/prompt the user.

c. Additional conditional Parameters will be executed.  The Spreadsheet

Business Rules can conditionally execute additional Parameters, based on the

results of resolved Parameters.

2. Once all the Parameters are resolved, theGetTableView function will be

processed.  This section will generate the results in the Table View.  The Table View

will also be evaluated to determine if there will be any writable conditions.  If there a

no writeable conditions, which is the default, any refresh of the Spreadsheet/Table

View will restart at the GetCustomSubstitutionVariables function.

3. If the GetTableView is flagged as a writeable table, the SaveTableView process will

be executed, writing back only the elements specifically defined in the Business

Rule.

Using Parameters

TheGetCustomSubstitutionVariables function is used incorporate Parameters into the

Table View.  Any parameters required are passed in as a list within the Function Type.  If

Table Views Guide 9

Technical Features and Setup



the Parameter is not included in the supporting Dashboard and resolved, for example as

a Combo box, the Parameter will be executed in the Table View to be resolved.

Additional Parameters can be included in the Table View to act as a nested, conditional

Parameter using the custSubtVarsAlreadyResolved function. This enables a resolved

Parameter to be evaluated to trigger additional Parameters to execute.  The

custSubstVarsAlreadyResolved can conditionally evaluate all resolved parameters to

determine subsequent parameters to be executed.

Can Modify Data

All Table Views will default to “read only”.  The Table View condition forCanModifyData

must be set to True to allow write-back capability.  TheCanModifyData object is set in

theGetTableView Function Type.  It is only required if any write-back is required based

on the current Table View.  The True condition will enable objects to be passed, and

enabled, in to the SaveTableView Function Type.  When refreshing a Table View, the

SaveTableView Function Type will not be executed unless the CanModifyData property

is set to True.

Table Views Guide 10

Technical Features and Setup



Table View Conditions

A single Spreadsheet Business Rule can contain multiple Table View definitions.  The

Table View Name can be called using theArgs.TableViewNameto allow conditionally

calling rule functions.

Table View Sources

Table View Business Rules can collect a variety of data records as a source. Typically, a

source is defined as a table from a database. It is not limited to a single table but can

collect records from multiple tables. The Table View Business Rule designer can define

the source essentially as any data accessible to the Spreadsheet Business Rules.

Table Views Guide 11

Technical Features and Setup



Similarly, the SaveTableView rules can be defined to any target accessible by the

Business Rules.

Table View Business Rule Example

This is an example only for the purpose of outlining the basic elements of a Table View

Business Rule.  By default, a Table View is “read only”.  A Spreadsheet Business Rule can

be defined to return a complete table. Always consider the size and content of the table

as it may impact performance. Elements that can impact performance, such as

exceeding the ability to render the Table View, are the total number of rows as well as the

content within the records.

GetTableView Function Type

Database Connection

Create connections to sources, such as a database table using business rules.

Determine if the Table View Requires Write-Back

If the Table View must write-back to a target database or table, theCanModifyData

property must be set to True.

Table Views Guide 12

Technical Features and Setup



Define the Table View Columns

Table columns can be returned for the entire table, or as distinct items.  When columns

are defined, they can be returned to the Table View using an alias description as part of a

Header section.

Create a nested, parameter-driven combo box in a Table View column by adding the

following code to your business rules: 

1 TableViewColumn  tableViewColumn1 = oTableView.CreateColumn("ParamName1", "Column1",
true, "Default.[pf8_1322_delimited_h_path_1]", true);

Table Views Guide 13

Technical Features and Setup



Returning Rows to the Table View

Each row cell is evaluated from the data table columns.  The designer has full control over

the display of the content of the table using Business Rule functions.  In the example

below, the presentation of the results will vary by column, by user using the BRAPI

Security Authorization function.

Security Filtering Results

Table Views Guide 14

Technical Features and Setup



Add New Records

Add new records to a table by assigning a specific range of editable rows at the bottom

of the Table View, which can be used by rules to commit the records into a table.  Format

the background area with a fill color to visually indicate the area is enabled for adding new

records.

Use the Insert Rows feature to insert empty rows into a table and change the

background color.

l CanModifyData: Set to True to False to determine if the table can contain empty

rows.

l NumberofEmptyRowsToAdd: Set the number of empty rows to add.

l EmptyRowsBackgroundColor: Set the color of the background.

The following example shows the business rule applied to the table.

Table Views Guide 15

Technical Features and Setup



DataType Object for Column Fields

The DataType object allows the designer to define the Column Field as Text or Numeric.

This object references the current XFDataType object. However, not all XFDataType

properties are valid for Table Views. Only Int16, Int32, Int64, Float,Double,Decimal, and

Textare valid.

If you do not specify a data type, it will default to Text.

Table Views Guide 16

Technical Features and Setup



In the example below, the Salary column is rendering the Table View Column fields as

numeric values to accurately reflect their nature and will support Spreadsheet based

calculations.

Enable Status Column

The Table View Business Rule can create a dedicated status column. In the example

below, it is My Status column.  Use this to classify records for use in conditional business

rule logic to drive behaviors.

In this example, the business rule can define members for a drop-down list defined as

Delete, Archive, and Inactive. The designer creates business rules to perform actions

based on the status of the records, such as delete, or archiving to another table.

Use the Enable Status Column option to manage records for your table.

l statusColumnEnabled: creates a status column in the table view when set to True.

l statusColumnName: string defines the name of the column. If left blank, the

default name “XFTV_Status” will be assigned. 

Table Views Guide 17

Technical Features and Setup



l statusColumnIndex: zero-based integer identifies the column where the status is

created. A value above the actual number of columns will assign the Status as the

last Column.  A negative number wil assign the Status column as the first column.   

l statusColumnValues: creates a list of members to select as a validation in the

Status column.  It is a hidden range at the top of the Table View.  If left blank, no list

or validation will automatically be created in the Status column, it will need to be

created manually by the designer.    

In the screenshot below, notice the Delete, Archive, Inactive, which is entered in the

business rule.

Table Views Guide 18

Technical Features and Setup



Write Back

If theGetTableViewFunction Type is modified to set the Table View property

CanModifyDataas True, theSaveTableView Function will execute.  This section is used

by the designer to define which records should write back to the target.  The target table

does not have to be the same as the source table. 

Control conditions should be designed into the write-back rules for efficiency and

performance.  For example, Member Functions, such as IsDirty() can be incorporated to

write only the modified members within the writeable records.

Member Functions

l IsDirty– Condition Check if the item has been modified

l IsHeader– Member record status as a Header record.

l Name – Member label of the data table.  Will not reference an alias label.

l OriginalValue– Condition reflects last stored value prior to the Table View refresh

l Value– Reflects the current value present on the Spreadsheet Table View.  This can

be a changed, unsaved value.

Table Views Guide 19

Technical Features and Setup



Create Table View From Data Table

You can create a Table View from Data Table using the Table View

PopulateFromDataTablefunction. The new function has two additional Boolean

properties to include a Header Row and to utilize the Data Table's Data Type. The

function is able to utilize any Data Table, including those from Dashboard Data Adapters

using the GetAdoDataSetForAdapter function.

Properties:

l tableView.PopulateFromDataTable(data Table , Include Header Row, Include Data

Types)

Table Views Guide 20

Technical Features and Setup



Column Format Object

The ColumnFormat Object allows the Table View Designer to format the content area of

a column, while excluding the Column Header for use as a separately formattable column

header using the HeaderFormat object.

tableView.Columns(1).ColumnFormat.ColumnWidth = 15

l BackgroundColor

l ColumnWidth

l FontFamily

l FontSize

l IsBold

l IsItalic

l IsUnderlined

l TextColor

l NumDecimals

l AsPercentage

Header Format Object

The use of the HeaderFormat Object requires the PopulateFromDataTable to include a

header or a scripted data table to define a TableViewRow as IsHeader=True. This

function allows a column headers to be formatted as a row using all the formatting

options except NumDecimals and AsPercentage.

tableView.HeaderFormat.BackgroundColor = XFColors.Navy

Table Views Guide 21

Technical Features and Setup



Incorporating Parameters

CAUTION: The OneStream Parameters to be bound, or used, in the

Spreadsheet Table View are defined in theGetCustomSubstVarsInUse

Function Type.   The Parameters can be resolved as a component within a

Dashboard, or they can be an element of the Table View.  Once resolved, the

Parameter is passed to theGetTableView Function Type.

Using XFTV Named Ranges

The purpose of creating a Spreadsheet using the “XFTV” named range is to manage data

cells with read and write functionality to a Table View.  This eliminates much of the work

related to creating dashboards which may require multiple text boxes, labels, combo

boxes, business rules and other controls to manage data across a table. 

The XFTV Named Range can be used to link a field to a Table View.  For example, a list of

members may be used in a drop-down list.  The selected item would then be used to

Table Views Guide 22

Technical Features and Setup



write back to a required field in a Table View, which would ultimately write to a target data

source.

A cell used as a Table View reference must be prefixed withXFTV_ to pass into a Table

View.  The structure of the named range is “Prefix_Table View Name_Column Name_Row

Number”. The row number position is a zero-based index.

Example

Sheet1 is designed as an interface or form based on records sourced from a table.

The data cell items are organized on the primary sheet with each being set as a XFTV

named range referencing Sheet2, which is the core Table View.

Sheet 2 is a Spreadsheet as defined by a Table Rule Business Rule

The Table View is added to the sheet and corresponds to the XFTV range definition on

Sheet 1. The XFTV named ranges associate their value to the Table View for read or write

processing dependent upon the Table View rule construction.

Table Views Guide 23

Technical Features and Setup



Modifying the Sheet1 “form” for an additional field simply requires adding a named range.

As an example, the “form” may require an additional field which may be found as a

referenced validation or from the source table view. For example, the “TermDate” field

may be required. Selecting the cell and adding the syntax for the XFTV named range, for

the appropriate field, will incorporate the results into the sheet.

Table Views Guide 24

Technical Features and Setup



The data will automatically refresh from the defined source. If defined as a write-back

field, changes to the cell can be written back to a target table using the “submit” function.

Table Views Guide 25

Technical Features and Setup



Security

Security is controlled by the Business Rule Developer in three ways. It is very important

that the business rule designer/author consider data security when creating table views.

The session info object within the rule can be used to restrict/grant data access for the

current user. Second, the writeback functionality will also be controlled within the

business rule to the user population allowed to perform the writeback, as well as the

granular level elements which may be modified.  Lastly, the Table View Business Rule

itself should be secured for viewing or access outside of the defined dashboard.

Data level, or Table level, security is incorporated within the Business Rule script.  Various

BRAPI functions can be conditionally included in the script to control the read and write

functionality each user will encounter when presented with the Table View.   Using Table

View Name arguments in the Business Rule, rather than relying on the default Business

Rule Name, will also add an additional level of security for related to the tables.

Business Rule level security should also be utilized to restrict access to those who can

edit and modify the underlying Table View Business Rule. This can be done by using

Table Views Guide 26

Security



Business Rule Encryption,which requires specific a user security role. Business Rule

Encryption applies password protection to any Business Rule it is applied to.

Additionally, the Business Rules for Table Views are stored in the Spreadsheet category. 

To control access to user’s access to retrieving the Table Views in their Application

Spreadsheet, theAccess Group on each rule should exclude any user who is not a

designer.

Table Views Guide 27

Security



The Table View function should be called using a condition for the Spreadsheet Table

View Name.  The will control all Table View functionality by a defined name, rather than

through the business rule alone.

Table Views Guide 28

Security



Summary

The Table Views feature is intended to provide a flexible solution for Dashboard “form”

development when an update to a table is required.  This business rule-based solution

can manage records from a variety of sources, as well as control the target and

granularity of the write-back records.  This feature fully supports Dashboard based

Parameters as well as additional levels of Table View based parameters to build rich

Spreadsheet based Dashboard interfaces. 

Table Views Guide 29

Summary



Sample Table View Rules File

Namespace OneStream.BusinessRule.Spreadsheet.TableViewSample

Public Class MainClass

Public Function Main(ByVal si As SessionInfo, ByVal globals As

BRGlobals, ByVal api As Object,

ByVal args As SpreadsheetArgs) As Object

                Try

                Select Case args.FunctionType

                    Case Is = SpreadsheetFunctionType.Unknown

                    Case Is =

SpreadsheetFunctionType.GetCustomSubstVarsInUse

                        Return GetCustomSubstVarsInUse(si,

args.CustSubstVarsAlreadyResolved)

                    Case Is =

SpreadsheetFunctionType.GetTableView

Table Views Guide 30

Sample Table View Rules File



                        'The same business rule can support

multiple Table Views.

                        If args.TableViewName.Equals

("MyTableViewName")

                            Return GetMyTableView(si,

args.CustSubstVarsAlreadyResolved)

                        End If

                    Case Is =

SpreadsheetFunctionType.SaveTableView

                        SaveMyTableView(si, args.TableView)

                End Select

                Return Nothing

            Catch ex As Exception

                Throw ErrorHandler.LogWrite(si, New XFException

(si, ex))

            End Try

        End Function

Private Function GetCustomSubstVarsInUse(ByVal si As SessionInfo,

ByVal custSubstVarsAlreadyResolved

Table Views Guide 31

Sample Table View Rules File



As Dictionary(Of String, String)) As List(Of String)

            Try

                'You will be prompted for the value of these

variables if they have not been resolved.

                Dim list As New List(Of String)

                list.Add("MyTableViewParameterName")

                Return list

            Catch ex As Exception

                Throw ErrorHandler.LogWrite(si, New XFException

(si, ex))

            End Try                            

        End Function

Private Function GetMyTableView(ByVal si As SessionInfo, ByVal

custSubstVarsAlreadyResolved

As Dictionary(Of String, String)) As TableView

            Try

                Dim sql As New Text.StringBuilder

                sql.AppendLine("Select * from MyTable")

Table Views Guide 32

Sample Table View Rules File



                'You can use substitution variables that have

been resolved within the query.

                If custSubstVarsAlreadyResolved.ContainsKey

("MyTableViewParameterName")

sql.AppendLine("Where MyFilterColumn = '" &

custSubstVarsAlreadyResolved("MyTableViewParameterName") & "' ")

                End If

                'Create and fill the data table

                Dim dt As DataTable = Nothing

                Using dbConnApp As DbConnInfo =

BRApi.Database.CreateApplicationDbConnInfo(si)

                    dt = BRApi.Database.ExecuteSql(dbConnApp,

sql.ToString, False)

                    If Not dt Is Nothing Then dt.TableName =

"NoData"

                End Using

                'Create the Table View object

                Dim tableView As New TableView()

Table Views Guide 33

Sample Table View Rules File



                'This allows the Table View data to be updated.

This is set to False by default.

                tableView.CanModifyData = True

                'Create Columns on Table View using the Data

Table columns.

                'Adding a header row to the Table View is

optional

                Dim tableViewRowHeader As New TableViewRow()

                For Each dataColumn As DataColumn In dt.Columns

                    'You can conditionally hide a column

                    'If Not Convert.ToString

(dataColumn.ColumnName).Equals("MyColumnToHide")

                        Dim column As New TableViewColumn()    

                        column.Name = dataColumn.ColumnName

                        column.Value = dataColumn.ColumnName

                        column.IsHeader = True

                        tableView.Columns.Add(column)

                        tableViewRowHeader.Items.Add(column.Name,

column)

                    'End If

Table Views Guide 34

Sample Table View Rules File



                Next dataColumn

                tableView.Rows.Add(tableViewRowHeader)

                'Create Column Data Rows

                For Each dataRow As DataRow In dt.Rows

                    Dim tableViewRow As New TableViewRow()

                        For Each tableViewColumn As

TableViewColumn In tableView.Columns

                            Dim column As New TableViewColumn()    

                            Dim columnValue As String = ""

                            column.Name = tableViewColumn.Name

                            columnValue = dataRow.Item

(tableViewColumn.Name)

                        'You can show/hide/mask column

conditionally (e.g. based on the user group)

                            If column.Name.Equals

("MySensitiveData") Then

If Not

BrApi.Security.Authorization.IsUserInAdminGroup(si) Then

                                    columnValue = "Not Available"

End If

Table Views Guide 35

Sample Table View Rules File



                            End If

                            column.Value = columnValue

                            column.IsHeader = False

                            tableViewRow.Items.Add

(tableViewColumn.Name, column)

                        Next TableViewColumn

                        tableView.Rows.Add(tableViewRow)

                Next dataRow

                Return tableView

            Catch ex As Exception

                Throw ErrorHandler.LogWrite(si, New XFException

(si, ex))

            End Try                            

        End Function

Private Function SaveMyTableView(ByVal si As SessionInfo, ByVal

tableView As TableView) As Boolean    

                'Add code to check if the user has permission to

write data.

                If Not tableView Is Nothing

Table Views Guide 36

Sample Table View Rules File



                    Dim sql As String = String.Empty

                    Dim tableViewMyPrimaryKey As New

TableViewColumn()

                    Dim tableViewMyColumnToUpdate As New

TableViewColumn()

                    Using dbConnApp As DbConnInfo =

BRApi.Database.CreateApplicationDbConnInfo(si)

                        For Each tableViewRow As TableViewRow In

tableView.Rows

                            If tableViewRow.IsHeader = False

                            For Each tableViewColumn As

TableViewColumn In tableView.Columns

                                    If tableViewColumn.Name =

"MyPrimaryKey"

                    tableViewMyPrimaryKey = tableViewRow.Item

(tableViewColumn.Name)

                                    End If

                            If tableViewColumn.Name =

"MyColumnToUpdate"

                        tableViewMyColumnToUpdate =

tableViewRow.Item(tableViewColumn.Name)

                                End If

Table Views Guide 37

Sample Table View Rules File



                                Next tableViewColumn

                                'Update the column value only if

the value was changed.

                                If

tableViewMyColumnToUpdate.IsDirty()

                            'Create audit records as needed

before and after updating data.

sql = "Update MyTable Set MyColumnToUpdate = '" &

tableViewMyColumnToUpdate.Value & "' Where

MyPrimaryKey = " & tableViewMyPrimaryKey.Value & " "

                                        BRApi.Database.ExecuteSql

(dbConnApp, sql, False)

                                    End If

                            End If

                        Next tableViewRow

                    End Using

                End If

            Return True

        End Function

    End Class

End Namespace

Table Views Guide 38

Sample Table View Rules File


	Table Views Spreadsheet and Excel Add-In
	Overview

	Technical Features and Setup
	Restrictions
	Table View Sizing
	Table Views Spreadsheet/Excel Ribbon Button
	Table View Business Rules
	Spreadsheet Function Types
	Processing Order
	Using Parameters
	Can Modify Data
	Table View Conditions

	Table View Sources
	Table View Business Rule Example
	GetTableView Function Type
	Database Connection
	Determine if the Table View Requires Write-Back
	Define the Table View Columns
	Returning Rows to the Table View
	Security Filtering Results
	Add New Records
	DataType Object for Column Fields
	Enable Status Column
	Write Back
	Create Table View From Data Table
	Column Format Object
	Header Format Object


	Incorporating Parameters
	Using XFTV Named Ranges
	Example


	Security
	Summary
	Sample Table View Rules File

