
API Overview Guide

8.2.4 Release



Copyright © 2024 OneStream Software LLC. All rights reserved.

Any warranty with respect to the software or its functionality will be expressly given in the
Subscription License Agreement or Software License and Services Agreement between
OneStream and the warrantee. This document does not itself constitute a representation or
warranty with respect to the software or any related matter.

OneStream Software, OneStream, Extensible Dimensionality and the OneStream logo are
trademarks of OneStream Software LLC in the United States and other countries. Microsoft,
Microsoft Azure, Microsoft Office, Windows, Windows Server, Excel, .NET Framework, Internet
Information Services, Windows Communication Foundation and SQL Server are registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
DevExpress is a registered trademark of Developer Express, Inc. Cisco is a registered trademark
of Cisco Systems, Inc. Intel is a trademark of Intel Corporation. AMD64 is a trademark of
Advanced Micro Devices, Inc. Other names may be trademarks of their respective owners.



Table of Contents
Introduction 1

Development Technologies 2

Programming Language 2

User Interface Technology 2

Server Technology 2

Database Technology 3

OneStream API Details and Database Documentation 3

Developer Fundamentals 4

VB.Net and C# 4

In-Solution Documentation 4

Business Rules Editor Overview 4

Helpful Resources 5

Platform Engines 7

Workflow Engine 7

Stage Engine 7

Finance Engine 7

Data Quality Engine 8

Data Management Engine 8

Presentation Engine 8

API Overview Guide i

Table of Contents



BRApi 9

Business Rules 10

Anatomy of a Business Rule 10

Business Rule Definition 10

Business Rule Classifications 12

Event Handler Business Rules 13

Complex Expressions 16

Business Rule Types 21

Organizing and Referencing Business Rules 30

API Structure and Organization 36

Namespaces 36

Namespaces Defined 37

Namespace Hierarchy 37

Microsoft Financial Calls 39

In-Solution Development 40

Custom Development 41

Using System Tools 42

System Business Rules 42

Database 43

Tables 43

API Overview Guide ii

Table of Contents



Tools 43

Data Records 43

Event Listing 44

Event Handler Business Rules 44

Event Firing Sequences 47

Finance Functions APIs 79

Member ID 80

Api.Pov.Time.MemberId 80

Api.Pov.Time.MemberId Usage 82

Api.Pov.Entity.MemberId 83

Api.Pov.Entity.MemberId Usage 84

Api.Pov.Account.MemberId 85

Api.Pov.Account.MemberId Usage 86

Dimension Primary Key - DimPk 87

DimPK Usage 87

Dimension Type Id 89

DimTypeID Usage 90

Data Unit Dimension POV 91

Data Unit Dimension POV Usage 91

API Overview Guide iii

Table of Contents



Time Functions 93

Api.Time.GetYearFromId 93

Api.Time.GetPeriodNumFromId 93

Api.Time.GetPeriodNumFromId Usage 93

Api.Time.GetNumDaysInTimePeriod 94

Api.Time.GetNumDaysInTimePeriod Usage 94

Api.Time.AddTimePeriods 95

Api.Time.AddTimePeriods Usage 95

Api.Time.AddYears 96

Api.Time.AddYears Usage 96

Using Member Functions for Calculations 98

GetMember 98

GetMember Usage 98

GetMemberId 99

GetMemberID Usage 99

GetBaseMembers 100

GetBaseMembers Usage 100

Writing Stored Calculations 102

Overload Function 103

Api.Data.Calculate Usage 103

API Overview Guide iv

Table of Contents



IsDurableCalculatedData 104

IsCurableCalculatedData Usage 104

Eval Function 104

Eval Function Usage 105

Summary 106

Remove Functions 107

RemoveZeros 107

RemoveNoData 107

Remove Functions Usage 108

GetDataBuffer Functions 110

GetDataBuffer Function 110

GetDataBuffer Usage 111

Unbalanced Math Functions 113

Unbalanced Math Functions 113

Unbalanced Math Functions Usage 114

GetDataBufferUsingFormula Function 114

FilterMembers 114

GetDataBufferUsingFormula Usage 114

API Overview Guide v

Table of Contents



Introduction
The purpose of the API Guide is to provide detailed information about the technologies and
application programming interfaces available to consultants and developers interested in
extending the functionality of OneStream. 

This document contains information about the technologies used in the OneStream product,
naming conventions and organizational approaches used by the OneStream engineering team.  It
also includes detailed reference listings for API methods and events exposed by OneStream.

For customers in a OneStream-hosted environment, see the Identity and Access Management
Guide for information about authentication with OneStream IdentityServer and using personal
access tokens (PATs).

API Overview Guide 1

Introduction



Development Technologies
Programming Language
The OneStream platform is based on the Microsoft .Net Framework. OneStream’s underlying
codebase is predominately made up of C# libraries with a few VB.Net libraries in use as well.  C#
and Visual Basic .NET are the two primary programming languages used to code against the
.NET Framework. C# and VB.NET have very different syntax elements, but Microsoft developed
these languages simultaneously as part of a common .NET Framework development platform.
Both C# and VB.Net are developed, managed, and supported by the same language
development team at Microsoft.  They compile to the same intermediate language (IL) which runs
against the same .NET Framework runtime libraries.  Although programming syntax is different for
each language, almost every command in VB has an equivalent command in C# and vice versa. 
Both languages reference the same underlying .NET Framework Base Classes to extend their
functionality.

User Interface Technology
The OneStream user interface is based on the Windows Presentation Foundation (WPF) in order
to provide a truly rich end user experience. WPF employs XAML, an XML based language, to
define and link various interface elements. WPF applications can be deployed as standalone
desktop programs, or hosted as an embedded object in a website. Windows 10 Store application
development provides another opportunity for WPF based applications to be deployed, but as
Windows only applications.

Server Technology
All OneStream code is hosted and executed with Microsoft Internet Information Services (IIS).
This means that both the Web Server (service code) and Application Server (service code) are
executed within an IIS Application Pool process host.  The code is running on the application
server tier hosted within the application sever IIS application pool.  This is a very important
concept to keep in mind because there will be times when a Business Rule must interact with
different elements of the system.  The context in which the Business Rule is running needs to be
understood in order to establish communication and/or interact with those other system elements.

API Overview Guide 2

Development Technologies



Database Technology
OneStream was designed to run on all versions of the Microsoft SQL Server relational database
engine (Express, Standard, Data Center, Enterprise and Azure Database as a Service).  For
larger organizations, the SQL Server Enterprise edition is recommended because OneStream
makes use of table partitioning.  This enables maximum throughput during heavily multi-threaded
operations such as data transformation and consolidation.  The OneStream engineering team is
committed to fully utilizing the capabilities of the most recent versions of SQL Server and to
keeping the OneStream platform optimized for new versions of SQL Server as they become
available.

OneStream API Details and Database Documentation
For more information on OneStream API functions and details on the OneStream Framework and
Application database tables and indexes, theOneStream API Details and Database
Documentation is available as part of the documentation. This can be found on MarketPlace
under Software Download. Create a folder on the PC on which this will be loaded and copy the
related zip file:

Right click and extract the zipped file’s contents here. Double-click the file which ends in chm and
this will launch the API Guide.

Contents are organized by the related Platform Engine (see Platform Engines). These are broken
down into Classes (e.g. DataApi), Overload Lists, Methods (e.g. GetDataCell), Syntax and
Parameters. The Index and Search tabs can be used to search by function name, enumerations,
properties, etc.

API Overview Guide 3

Development Technologies



Developer Fundamentals
VB.Net and C#
The OneStream platform is based entirely on the Microsoft .Net Framework as is the Business
Rules engine. Therefore, VB.Net and C# are the logical choice for Business Rule syntax. At
execution time, all Business Rules are compiled on demand and cached for fast and reliable
execution. Writing a Business Rule in VB.Net or C# provides the end user with many advantages
over older products based on VBScript. Business Rule writers can expect exceptional code
performance, better error messaging, and better error handling because VB.Net and C# are a full
featured programming language. In the end, these capabilities result in a more reliable Business
Rule code.

NOTE: There are two broad Business Rule Classifications: Shared Business Rules
and Item Specific Business Rules. Shared Business Rules can be written in either
VB.NET or C#, Item Specific Business Rules can be written in VB.NET only.

In-Solution Documentation
The Business Rule Editor includes context sensitive help for API properties and methods as well
as Snippets (code examples). In-solution documentation makes the process of writing a Business
Rule more efficient because both API Documentation, Objects, and Samples are presented within
the Business Rule Editor window.  In addition, useful coding examples accumulated by the
OneStream engineering and consulting teams are also presented in context sensitive manner
within the Business Rule editor.  Companies and partners can author their own Snippets and
include them in their application as an extension of the OneStream predefined Snippets (Snippet
Editor MarketPlace Solution required). 

Business Rules Editor Overview
The Business Rule editor is a powerful in-solution screen that provides integrated API context
help, syntax editing with intelli-sense, and full outlining capabilities.  The actual syntax content
and Business Rule structure will be discussed at length in subsequent sections of this document.

The image below explains the major regions and elements of the Business Rule editor. 

API Overview Guide 4

Developer Fundamentals



Helpful Resources

VB.Net
VB.Net is one of the most popular programming languages in use today.  This language is
especially popular amongst business users because the syntax is perceived to be more readable
and business user friendly than other programming languages.  VB.Net still shares many of the
same syntax elements of older VB dialects such as VB6, VBA and VBScript.  This means that
users who have written Macros in Microsoft Excel or used VBScript to write Business Rules in first
generation CPM solutions should feel comfortable with the core syntax elements of VB.Net.  The
main learning challenge business users face when migrating to VB.Net is understanding the
object oriented nature of the language.  In comparison to VBScript, VB.Net offers more elegant
coding opportunities. Many of the statements and processes are manually created in VBScript,
but in VB.Net they are encapsulated in object libraries on which users can simply call. 

API Overview Guide 5

Developer Fundamentals



Microsoft VB.Net Learning
Getting comfortable with VB.Net takes a little awareness of the basic libraries and objects
provided by the Microsoft .Net Framework.  The link below points to some resources that business
users may find helpful during the VB.Net learning process.

Microsoft Visual Basic
https://msdn.microsoft.com/en-us/library/2x7h1hfk.aspx

C#
C# (pronounced "See Sharp") is a modern, object-oriented, and type-safe programming
language. This language is especially popular amongst developers as it enabled them to build
many types of secure and robust applications that run in .NET. C# has its roots in the C family of
languages and will be immediately familiar to C, C++, Java, and JavaScript programmers.

Microsoft C# Learning
The link below points to some resources that business users may find helpful during the C#
learning process.

https://docs.microsoft.com/en-us/dotnet/csharp/

API Overview Guide 6

Developer Fundamentals

https://msdn.microsoft.com/en-us/library/2x7h1hfk.aspx


Platform Engines
The platform is comprised of multiple processing engines.  These engines have distinct
responsibilities with respect to system processing and consequently they expose different API
interfaces to the Business Rules they call.  This section provides a brief overview of each engine
in the platform and describes the engine’s core responsibilities.

Workflow Engine
TheWorkflow Engine is thought of as the controlling engine or the puppeteer.  The main
responsibility of this engine is to control and track the status of the business processes defined in
the Workflow hierarchies.  This engine is primarily accessed through the BRApi and can be called
from other engines in order to check Workflow status during process execution.  The Workflow
Engine provides a very rich event model allowing eachWorkflow process to be evaluated and
reinforced with customer specific business logic if required (see Appendix 2: Event Listing).

Stage Engine
The Stage Engine performs the task of sourcing and transforming external data into valid analytic
data points.  The main responsibility of this engine is to read source data (files or systems) and
parse the information into a tabular format.  This allows the data to be transformed or mapped to
valid Members defined by the Finance Engine.  The Stage Engine is an in-memory, multi-
threaded engine that provides the opportunity to interact with source data as it is being parsed
and transformed.  In addition to parsing and transforming data, the Stage Engine also has a
sophisticated calculation that enables data to be derived and evaluated based on incoming
source data.  The Stage Engine provides quality services to source data by validating, mapping,
and executing Derivative Check Rules.

Finance Engine
The Finance Engine is an in-memory financial analytic engine.  The main responsibility of this
engine is to enrich and aggregate base data cells into consolidated multi-Dimensional
information.  The Finance Engine provides the opportunity to define sophisticated financial
calculations through centralized Business Rules as well as member specific Business Rules
(Member Formulas). It works concurrently with the Stage Engine to validate incoming
intersections and works with the Data Quality Engine to execute Confirmation Rules which are
used to validate analytic data values.

API Overview Guide 7

Platform Engines



Data Quality Engine
The Data Quality Engine is responsible for controlling data confirmation and certification
processes.  This Confirmation Engine is used to define and control the sequence of data value
checks required to assert the information submitted from a source system is correct.  The
Certification Engine is responsible for managing user certifications and determining the Workflow
dependents’ completion status.  This engine is primarily accessed through the BRApi and may be
called from other engines in order to check data quality status during process execution.

Data Management Engine
The Data Management Engine provides task automation services to the platform.  This engine
executes batches of commands that are organized into sequences which contain steps.  Steps
represent entry points or mechanisms to execute features of other engines.  For example, the
Clear Data Step uses the services of the Finance Engine.  In addition, the Data Management
Engine has the ability to execute a Business Rule Step which executes a custom Business Rule
as part of a Data Management Sequence.  This is an incredibly powerful capability because it
provides the ability to string together any combination of predefined processing steps with custom
Business Rule steps.

Presentation Engine
The Presentation Engine provides extensive data visualization services to platform.  The
Presentation Engine is made up of the following component engines: Cube View Engine,
Dashboard Engine, Parameter Engine, Book Engine and Extensible Document Engine.  The
Presentation Engine is responsible for managing and delivering content to the end user as well as
providing a development environment for custom user interface elements.  This engine enables
OneStreamMarketPlace application development capabilities and continues to evolve with each
product release.  Like the Data Management Engine, the Presentation Engine interacts with and
can call the services of all other engines in the product.

API Overview Guide 8

Platform Engines



BRApi
The BRApi is common across all Business Rules, engines and APIs being run, so it is not an
engine itself.  A BRApi function runs outside of the other engines and can orchestrate certain
functions from within other engines. In other words, a BRApi function be run from one engine (e.g.
Parser) to tell other engines (e.g. Finance) to execute their own APIs (e.g.
API.Data.GetDataCellUsingMemberScript). For another example, while the
API.Data.GetDataCell function is available from within the Finance engine, a similar BRApi called
GetDataCellUsingMemberScript can be run from any engine if given the appropriate arguments. 
A common use is BRApi.ErrorLog.LogMessage from any engine.

API Overview Guide 9

Platform Engines



Business Rules
Anatomy of a Business Rule
This section provides a detailed explanation of the following:

l Business Rule structure and fundamentals

l Business Rule Classifications

l Specific Business Rule Types

l Business Rule organization

l OneStream Business Rule framework

l Best practices for Business Rule architecture

Business Rule Definition
A Business Rule is a class, meaning each business rule is an independent object encapsulating
code written in either VB.Net or C#. A business rule can be a one-line call to write a log message,
or it can be a full code library containing other custom classes, methods and properties. 

Each OneStream Business Rule has a predefined Namespace, a Public Class and a Public
Function that the OneStream platform engines invoke when the Business Rule needs to be
called.

NOTE: There are two broad Business Rule Classifications: Shared Business Rules
and Item Specific Business Rules. Shared Business Rules can be written in either
VB.NET or C#, Item Specific Business Rules can be written in VB.NET only. All
code examples presented in this guide will be shown in VB.NET.

Predefined Object Names
l Namespace: OneStream.BusinessRule.<Business Rule Type>.<Unique Business Rule
Name>

API Overview Guide 10

Business Rules



l Class: MainClass;

l Function: Main

Example Business Rule Structure

Function Prototypes
Each Business Rule has one standard entry point Function Title called Main. The Function
definition below represents the standard prototype used by the Main Function in each OneStream
Business Rule. The Main Function always has the same standard parameter layout, but the last
two parameters, API and ARGS, contain different object references based on the type of
Business Rule being executed.

Public Function Main

(

ByVal si As SessionInfo, Connection Object Required to use API

ByVal globals As BRGlobals, Global Variable Object Used to Share Values

ByVal api As Object, Specific API object (Different for each Type)

ByVal args As ExtenderArgs Specific Arguments (Different for each Type)

API Overview Guide 11

Business Rules



)

As Object

Business Rule Classifications
OneStream provides classifications for business logic organization. At the core, all business logic
is delivered and executed as compiled VB.Net or C# code. This means no matter what type of
business logic is used, there is a consistency in the syntax and compilation process. The reason
for different classifications has to do with when and how the business logic is invoked and how the
business rule is scoped.

There are two broad business rule classifications: shared business rules and item specific
business rules. Each engine in the systemmay support one or both business rule classifications.
Whenever a processing sequence is executed in the platform, the particular engine(s) involved
evaluates how and what business logic is associated with the process. This may include shared
business rules (named and event handlers) as well as item specific business rules (member
formulas, logical expressions, and confirmation rules).

NOTE: Shared business rules can be written in either VB.NET or C#, item specific
business rules can be written in VB.NET only.

Finance Engine Example
During a consolidation process, a Named Business Rule is associated with the Cube being
processed.  The Cube contains Member Formulas associated with some of its Dimensions.  In
this case, the Finance Engine compiles both the Named Business Rule and each individual
Member Formula in preparation for the calculation sequence.

Stage Engine Example
A similar example applies to the Stage Engine.  During a parse and transformWorkflow process,
a Named Business Rule is associated with the Data Source or Transformation Rules.  In addition,
individual Data Source Dimensions or Transformation Rules have associated Logical
Expressions that are also fired.  In this case, the Stage Engine compiles both Named Business
Rules and each individual Logical Expression in preparation for execution during the parse and
transform execution sequence.

API Overview Guide 12

Business Rules



Shared Business Rules
Shared Business Rules are reusable because the rule is written and stored centrally in the
Business Rule Library.  This means the same rule can be called or referenced by multiple platform
components.  For example, the Business Rule highlighted in the image below is a general
Extensibility Rule.  This rule can be executed from the Business Rule Editor, called by a Data
Management Job or called by another Business Rule.  Shared Business Rules are the code files
seen in the tree when the OneStream Syntax Editor is open, they are organized by type, (see
Business Rule Types in Chapter 4: Business Rules) and named by the user who created the rule.

Event Handler Business Rules
Event Handler Business Rules are a predefined set of Shared Business Rules and are always
defined as an Extensibility Rule Type.  Event Handler Rules are invoked during a processing
sequence by their related platform engine in order to supplement the process.  Determine/filter
how/if the execution behaves for specific Workflows or the Cube POV. When an Event Handler
Business Rule is called, the calling engine supplies information about the executed process
providing context about the process and information about the specific sub-event executed.

Predefined Event Handler Business Rules
The list below details the specific predefined Event Handlers available in the platform.  For details
on the individual sub-events that fire for each Event Handler Business Rule, see Event Listing.

API Overview Guide 13

Business Rules



l Data Management Event Handler

l Data Quality Event Handler

l Forms Event Handler

l Journal Event Handler

l Save Data Event Handler

l Transformation Event Handler

l Workflow Event Handler

l Wcf Event Handler

Item Specific Business Rules
Item Specific Business Rules are complete rules like Shared Business Rules, however they are
authored and stored with the specific platform item with which the rule is associated.  There are
different reasons for using Item Specific Business Rules vs Shared Business Rules. 

For example, when creating a one-off rule without any reusable value to other components in the
system, write an Item Specific Business Rule directly on the platform component because it
requires a very specific piece of business logic.  Another example, which is more common when
creating calculation logic for an analytic model, is to write a Member Formula that directly
associates a calculation with a Dimension Member.  This creates systemmaintenance clarity and
maintainability. 

Item Specific Rules, in particular Member Formulas, can have a positive performance impact
because they allow calculations to be broken down into formula passes and processed in a
parallel (multi-threaded) fashion.  The same formulas can be written in a Shared Finance
Business Rule, but the calculations will always execute in the serial manner defined in the rule.

Item Specific vs Shared Code Structure

As mentioned above, an Item Specific Business Rule and a Shared Business Rule are identical in
code structure. When writing an Item Specific Business Rule, the code editor presents some
hidden sections in the code window:

API Overview Guide 14

Business Rules



l Formula Header

l Formula Footer

l Helper Function Header

l Helper Function Footer

These hidden sections (i.e. Regions) keep the formula / expression as readable as possible.  In a
Shared Business Rule, these sections are visible which make the rule more verbose.  The idea
behind the Item Specific Business Rule is to create discrete code blocks that are easy to manage
and have limited interdependencies.  If one knows how to write a Shared Business Rule, then
she/he also knows how to write an Item Specific Business Rule and vice versa.

Item Specific Rules are categorized into three types: Member Formulas, Complex Expressions,
and Confirmation Rues.  These relate to the platform engine with which they are associated.

Member Formulas
AMember Formula is assigned to a Dimension Member and executes within the Finance Engine
during a Cube processing sequence (see the Formula Design Guide in the OneStream Design
and Reference Guide for more information on processing sequences). Member Formulas provide
the same level of syntax and logic capability that exist when writing a Finance Shared Business
Rule, however custom consolidation, elimination, and translation logic cannot be written. Member
Formulas are a great choice for writing logic limited to calculations based on a single Member and
calculations that do not span Dimensions.  If Member Formulas are written with these constraints
in mind, then the Dimension Member and its formula can be reused in different Cubes without
having dependencies on other Dimensions.  This does not mean that a Member Formula cannot
look at other Dimensions.  Referencing Dimension Members outside of the specific Dimension
where the formula exists will limit the reusability of the Dimension, or require all referenced
Dimensions be used together in any new Cube.

Member Formulas are written directly on a Dimension Member within the Dimension Library. 
Navigate to the specific Member’s Formula property and click the ellipsis in order to store a
Member Formula.   The example below is a simple working capital Member Formula.

API Overview Guide 15

Business Rules



Complex Expressions
A Complex Expression is a Business Rule assigned to Data Source Dimensions, Derivative
Rules, and Transformation Rules and execute within the Stage Engine during a transformation
processing sequence.  Complex Expressions provide the same level of syntax and logic capability
that exist when writing a Stage Shared Business Rule.  The primary reason for using a Complex
Expression rather than a Stage Shared Business Rule is the logic being written has no reusability. 
Complex Expressions isolate the logic by associating it directly with a specific item.

API Overview Guide 16

Business Rules



Using Complex Expressions in a Data Source
Apply Complex Expressions to a Data Source Dimension by selecting the Dimension requiring
custom logic and setting the Logical Operator.  The Logical Operator property opens the Logical
Expression Editor dialog and allows the user to either select a Shared Parser Business Rule or
write a Complex Expression.  Both Shared Parser Business Rules and Parser Complex
Expressions result in the exact same compiled Business Rule code.  The exception is a Complex
Expression is only executed for the Dimension to which it is applied and a Shared Parser Rule is
shared and can be called by many Dimensions.

API Overview Guide 17

Business Rules



Using Complex Expressions in a Derivative Rule
Apply Complex Expressions to a Derivative Rule by selecting the individual Derivative Rule

requiring custom logic and setting the Logical Operator.  Clicking the Edit Rule Formulas
toolbar button opens the Logical Expression Editor dialog and allows the user to either select a
Shared Derivative Business Rule, write a Complex Expression, or use a Pre-Built Expression. 
Both Shared Derivative Business Rules and Derivative Complex Expressions result in the exact
same compiled Business Rule code.  The exception is a Complex Expression is only executed for
the rule to which it is applied and a Shared Derivative Rule is shared and can be called by many
rules.

API Overview Guide 18

Business Rules



Using Complex Expressions in a Conditional Transformation
Rule
Apply Complex Expressions to a Transformation Rule by selecting the individual Transformation
Rule requiring conditional logic and setting the Logical Operator. Clicking the Edit Rule Formulas

toolbar button opens the Logical Expression Editor dialog and allows the user to either select
a Shared Conditional Business Rule or write a Complex Expression.  Both Shared Conditional
Business Rules and Conditional Complex Expressions result in the exact same compiled
Business Rule code.  The exception is a Complex Expression is only executed for the rule to
which it is applied and a Shared Conditional Rule is shared and can be called by many rules. 

NOTE: Shared Conditional Business Rules and Complex Expressions cannot be
applied to One-To-One Transformation Rule Types. One-To-One Transformation
Rules are executed during the parsing process and therefore are completely
processed prior to the conditional mapping process.

API Overview Guide 19

Business Rules



Confirmation Rules
Confirmation Rules are called by the Data Quality Engine and Finance Engine.  Apply Complex
Expressions to Confirmation Rules by selecting the individual Confirmation Rule and clicking the

Edit Rule Formulas toolbar button.  This button opens the Rule Editor dialog and allows the
user to write a Complex Expression containing the Confirmation Rule logic.  A Confirmation Rule
is only written on the specific rule to which it applies.  Confirmation rules do not have an equivalent
Shared Business Rule because each Confirmation Rule requires specific logic.

API Overview Guide 20

Business Rules



TIP: Shared Finance Business Rules can be called from a Confirmation Rule.  Create
standard helper functions in a Shared Finance Business Rule and call them from a
specific Confirmation Rule creating some reusable logic and improving the overall
Confirmation Rule infrastructure maintenance (see Business Rule Organization and
Referencing in Business Rules).

Business Rule Types

Finance
Finance Business Rules are used to generate multi-Dimensional calculations.  These Business
Rules are written as Shared Business Rules and applied to a Cube or Member Formulas.

API Overview Guide 21

Business Rules



Invoking Engine
Finance

API Object Type
FinanceAPI

Args Object Type
FinanceRulesApi

These contain multiple child objects that are populated based on how the rule type is called.

l FinanceRulesApi.MemberListHeadersArgs

l FinanceRulesApi.MemberListArgs

l FinanceRulesApi.DataCellArgs

l FinanceRulesApi.FXRateArgs

l FinanceRulesApi.ConfirmationRuleArgs

l FinanceRulesApi.CalculateArgs

l FinanceRulesApi.DrillDownArgs

Common Usage

The list below details the common use cases that apply to Finance Business Rules:

l Stored Calculation of a Member Value

l Dynamic Calculation of a Member Value

l Programmatic Member Filters

l Scenario Copy Logic

l Allocation Logic

l Conditional No Input Rules

l Custom Consolidation Logic (Shared Business Rule only)

l Custom Translation Logic (Shared Business Rule only)

API Overview Guide 22

Business Rules



l Custom Elimination Logic (Shared Business Rule only)

l Confirmation Rule Logic

l Custom Calculations (Done via Dashboard Parameter Components)

Parser
Parser Business Rules are used to evaluate and/or modify field values being processed by the
Stage Parser Engine as it reads source data.  These Business Rules are written as Shared
Business Rules or Logical Expressions and applied to a Data Source Dimension.

Invoking Engine
Stage

API Object Type
ParserDimension

Args Object Type
ParserArgs

Common Usage

The list below details the common use cases that apply to Parser Business Rules.

l Custom Parsing Logic

l Field Value Concatenation

l Field Value Bypassing

l Evaluate Field other than Current Field being Parsed

Connector
Connector Business Rules are used to communicate with, collect data from, and drill back to
external systems.  These Business Rules are written as Shared Business Rules and applied to a
Data Source.

Invoking Engine
Stage

API Object Type
Transformer

API Overview Guide 23

Business Rules



Args Object Type
ConnectorArgs

Common Usage

The list below details the common use cases that apply to Connector Business Rules.

l Source System Connection Logic

l Source System Field List Logic

l Source System GetData Logic

l Source System DrillBack Logic

Conditional Rule
Conditional Rules (mapping) are used to conditionally evaluate mapping criteria during the data
transformation process.  These Business Rules are written as Shared Business Rules or Logical
Expressions and applied to a Transformation Rule definition.

Invoking Engine
Stage

API Object Type
Transformer

Args Object Type
ConditionalRuleArgs

Common Usage

The list below details the common use cases that apply to Conditional (mapping) Business Rules.

l Evaluate Source Values and Conditional Map Target

l Evaluate Other Mapped Value and Conditional Map Target

API Overview Guide 24

Business Rules



DerivativeRule
Derivative Rules (derive data prior to mapping) are used to evaluate and/or calculate values
during the data derivation process.  These Business Rules are written as Shared Business Rules
or Logical Expressions and applied to a Derivative Rule definition.

Invoking Engine
Stage

API Object Type
Transformer

Args Object Type
DerivativeRuleArgs

Common Usage

The list below details the common use cases that apply to Derivative (derived data) Business
Rules.

l Calculate Mathematical Expressions

l Lookup Value from Transformation Cache for use in Calculations

l Lookup Value from Cube for use in Calculations

l Source System Check Rule Logic (validation rules on source data)

Cube View Extender
Cube View Extender Rules are used to apply advanced Cube View formatting to any Cube View
Report.  Using custom formatting allows the Cube View design to go beyond the standard Cube
View formatting properties and provides flexibility for specific formatting needs.  The Extender
Rule is used in conjunction with the Custom Report Formatting properties on the Cube View under
General Settings|Report Tab. 

Invoking Engine
Presentation

API Object Type
No specific API (used General BRApi)

API Overview Guide 25

Business Rules



Args Object Type

CubeView

CubeViewExtenderFunctionType

CubeViewExtenderReport

CustomSubVars

FunctionType

Common Usage

l Display different logos on select reports based on conditional logic or security and manage
their placement and size

l Customize the page number in the header or footer
Page numbers can be on the top or bottom row of a report and the horizontal position can
be specified for rows.  This only applies to the top or bottom rows.

l Format individual header and footer fields

l Customize the Cube View Header

o Control the Left, Right, Center Subtitle widths

o Control the font size of Title and Subtitles

l Customize the date display

l Customize bottom text alignment

l Apply Conditional Formatting
Format cells based on their contents.  Change the text color of a value in order to effectively
hide the result.

l Customized Report row and column formatting such as borders, background and text
colors and alignment

API Overview Guide 26

Business Rules



DashboardDataSet
DashboardDataSet Rules are used to create programmatic query results. This rule type combines
multiple types of data into a single result set using the full syntax capability of VB.Net or C#. These
Business Rules are written as Shared Business Rules and applied to Dashboard Data Adapters
or Dashboard Parameters.

Invoking Engine
Presentation

API Object Type

No specific API (used General BRApi)

Args Object Type
DashboardDataSetArgs

Common Usage

The list below details the common use cases that apply to DashboardDataSet Business Rules.

l Combine Different Types of Data for a Report

l Build Programmatic Data Queries (e.g., analytic plus SQL)

l Conditionally Build Data Query Reports

l Conditionally Build Data Query Parameters

DashboardExtender
DashboardExtender Rules are used to perform a variety of tasks associated with custom
Dashboards and MarketPlace Solutions. These Business Rules can be thought of as multi-
purpose rules and make up the majority of the code written in a MarketPlace Solution. In addition,
they are written as Shared Business Rules and applied to Application Dashboard Parameter
Components (Buttons, Combo Boxes, etc.).

Invoking Engine
Presentation

API Object Type
No Specific API (uses General BRApi)

API Overview Guide 27

Business Rules



Args Object Type
DashboardExtenderArgs

Common Usage

The list below details the common use cases that apply to DashboardExtender Business Rules.

l Execute a Task when the User Clicks a Button

l Perform a Task and Show a Message to the User

l Perform a Custom Calculation

l Upload a File from the End User’s Machine

l Automate a Workflow

l Build a CustomWorkflow

l Create Custom Data Tables

l These rules are basically limited to the imagination of the developer

DashboardStringFunction
DashboardStringFunction (reference as XFBR) Rules are used to process conditional Dashboard
Parameters. These rules inspect and alter a Dashboard Parameter value using the full syntax
capabilities of VB.Net or C#. DashboardStringFunctions are written as Shared Business Rules
and called by using a XFBR(BusinessRuleName, FunctionName, UserParam=[UserValue])
specification anywhere a standard Dashboard Parameter is used.

Invoking Engine
Presentation

API Object Type
No Specific API (uses General BRApi)

Args Object TypeDashboardStringFunctionArgs

Common Usage

The list below details the common use cases that apply to DashboardStringFunction (i.e.,
conditional Parameters) Business Rules.

API Overview Guide 28

Business Rules



l Evaluate a Dashboard Parameter and conditionally return another Value

l Evaluate a Cube View Parameter and conditionally return another Value

l This Business Rule can be substituted anywhere a Dashboard Parameter is used in order
to evaluate the Supplied Parameter value and return a different value

Extender
Extender Rules are the most generalized type of Business Rule in the platform.  Use these to write
a simple utility function or a specific helper function called as part of a Data Management Job.
These Business Rules are written as Shared Business Rules and executed directly from the code
editor, a data management job or the Finance Engine during an external Dimension request (i.e.,
read Dimension Members from an external list).

Invoking EngineBusiness Rule, Data Management, Finance

API Object TypeNo Specific API (uses General BRApi)

Args Object Type

ExtenderArgs

This contains multiple child objects that are populated based on how the rule type is called.

l ExtenderArgs.DataMgmtArgs

l ExtenderArgs.ExternalDimSourceArgs

Common Usage

The list below details the common use cases that apply to Extender Business Rules.

l Create a General Helper Rule for Administrators Only

l Create Data Management Business Rule Step Logic

l Create a Query to fill an External Dimension List

API Overview Guide 29

Business Rules



Organizing and Referencing Business Rules
The Business Rule framework provided organizes business rules to maximize their reuse. You
can link business rules and reference one business rule from another. You can also link and call
external DLLs from a business rule. This section describes how to reference a shared business
rule and an external DLL from another business rule.

Defining a Reference to a Shared Business Rule
When you create a shared business rule is created, its public members can be referenced and run
by other shared and item specific business rules. Creating a shared or referenced business rule
lets you:

l Create a list of shared constant values.

l Create a set of standard helper functions.

l Centralize the maintenance of shared logic.

Reference Syntax
This section defines the syntax required to reference a shared business rule from another shared
or item specific business rule.

Shared business rules referencing other shared business rules
To create a reference from one shared business rule to another, go to the rule calling a Public
Method of another shared business rule and make a declaration in the Referenced Assemblies
property. The syntax requires a BR\ prefix and the business rule name to reference. A rule may
reference either a VB.NET or C# rule.

TIP: Reference multiple business rules by creating a comma-separated list of reference
statements.

API Overview Guide 30

Business Rules



Syntax

BR\<business rule name to reference>

Example (Single Reference)

BR\OPS_PostalServiceHelper

Example (Multiple References)

BR\OPS_PostalServiceHelper; BR\CPP_SolutionHelper

Referencing a Shared Business Rule From an Item Specific
Business Rule
Finance, Parser, ConditionalRule and DeriviativeRule shared business rules have equivalent item
specific business rules. When you create a shared business rule, set the Contains Global
Functions For Formulas property to True to make the rule available to I\item specific business
rules. Item specific business rules do not have a Referenced Assemblies property so can only
reference shared rules of the same engine type with the Contains Global Functions For Formulas
property set to True.

In the example below, the SharedForecastSeeding rule can be called from any other Finance rule
because its Contains Global Functions For Formulas property is True.

API Overview Guide 31

Business Rules



NOTE: If a Finance business rule has Contains Global Functions For Formulas set
to True, changes to the business rule have a metadata status impact and change
the Calculation Status toOK, MC.  This dependency must occur because a global
rule can be used by a member formula calculation which can impact the status of
the Finance Engine’s data (analytic / Cube data).

Using a Code Declaration
Once a reference is made to a shared business rule, its Public Methods (Functions / Subs) can be
called. To access the Public Methods, declare an instance of the rule in the code using the
Business Rule’s fully qualified Namespace. This creates an object variable that references the
shared business rule calls its Public Methods.

Example Declaration

‘Declaring an object variable to reference a shared business rule.

Dim opsHelper As New OneStream.BusinessRule.DashboardExtender.OPS_
PostalServiceHelper.MainClass

Example Usage

‘Executing a function on the Reference business rule object variable

Dim desc As String opsHelper.GetFieldFromID(si, "Dashboard", "Name",
dashName, "Description")

API Overview Guide 32

Business Rules



Referencing an External .Net DLL
Developers can build and reference customMicrosoft .Net DLLs from shared business
rules. These are written in either VB.Net or C#.  Custom, encapsulated business logic can be
protected within an external DLL written in Microsoft Visual Studio.

Create a DLL referenced by a business rule to:

l Protect domain specific intellectual property (hide value programming logic).

l Separate code with dependencies on other programs (system integration wrappers).

l Complex logic requiring development tools only available within Microsoft Visual Studio
(Web Service Discovery and Interface Development).

Installing and Configuring DLLs
Perform these tasks to enable an external DLL to be referenced from a shared business rule.

1. Specify the BusinessRuleAssemblyFolder located in the Application Server configuration
file. This folder should be shared by all application servers. The folder must be accessible
via the Account Credentials used to configure the IIS Application Pool on the application
server.

This setup is a best practice, but not required. Alternatively, you can reference the external
DLL from a folder on each application server. When the DLL is updated, copy it to a
standard folder on each application server.

2. Identify or create the external DLL to be called and copy it to BusinessRuleAssemblyFolder.
When a business rule runs and an external DLL reference with the XF\ prefix is found in the
Referenced Assemblies property of the rule, the application server looks in the
BusinessRuleAssemblyFolder specified in the application server configuration file to find
the DLL to reference.

3. Add a reference specification to the DLL in the Referenced Assemblies property of the
business rules using it.

Reference Specification
This section defines the syntax required to reference an external DLL using the shared business
rule's Referenced Assemblies property. There are three methods to reference an external DLL.

API Overview Guide 33

Business Rules



Method 1
This method uses the XF\ prefix to create a reference to an external DLL located in the
BusinessRuleAssemblyFolder folder which is specified in the application server configuration file.

Syntax
XF\<External DLL Name to Reference>

Example (Single Reference)
XF\ExternalCode.DLL

Example (Multiple References)
XF\ExternalCode1.DLL;XF\ExternalCode2.DLL

Method 2
This method uses the file system path C:\DLLFolderName\ to create a reference to an external
DLL on each application server. 

NOTE: The same folder path and DLL must exist on all application servers. This
method is not a best practice for custom business logic DLLs because it increases
maintenance. 

You can use a file system path to reference an external DLL that already exists on an application
server, as part of the operating system or as an installed component.

Syntax
C:\DLLFolderName\<External DLL Name to Reference>

Example (Single Reference)
C:\DLLFolderName\ExternalCode.DLL

Example (Multiple References)
C:\DLLFolderName\ExternalCode1.DLL; C:\DLLFolder\ExternalCode2.DLL

Code Declaration
Once a reference is made to an External DLL from a shared business rule, the Public Methods
(Functions / Subs) of that external DLL can be called. To access the shared business rule’s Public
Methods, declare an Import to the Namespaces defined by the DLL, then create an instance of
the desired class to use in the code.

Example Import

Imports YourNamespace.SubNamespace

Example Declaration

API Overview Guide 34

Business Rules



‘Declaring an object variable to reference a class on the external DLL

Dim extHelper As New YourClass

Example Usage

‘Executing a Function on the external DLL

Dim desc As String extHelper.YourFunciton(“SomeParameter”)

Method 3
This method uses a Windows environment variable to create a reference to an external DLL.  All
standard Windows paths are supported and the name is determined by .NET.

Syntax
%System%\DLLName.DLL

Example
%userprofile%\documents\WindowsBase.DLL

API Overview Guide 35

Business Rules



API Structure and Organization
Namespaces
The Microsoft .Net Framework organizes code libraries into subject areas called Namespaces. 
The process begins with identifying the Namespaces (libraries) required for the procedure being
created. Namespaces provide distinction to the objects and methods that exist in a code
library. As a best practice, Namespaces typically start with the name of the company that created
the code library.This prevents naming conflicts for objects that share a common name, but were
created by different software providers.

In an effort to keep coding syntax as terse as possible, the .Net Framework allows the user to
specify common Namespaces to use at the top of a Business Rule. These lines are preceded by
the key word Imports. Adding Imports Statements prevents having to type an object’s fully
qualified name within a Namespace.

All Business Rules are prepopulated with both the commonly used Microsoft Namespaces as well
as the OneStream specific Namespaces. For example, adding the statement Imports
System.Math to a Business Rule enables access to objects in the System.Math Namespace. 
Instead of typing System.Math.Round(100.05,0), type Round(100.05,0).

The example below shows the Namespace references used in a standard Extensibility Rule.

API Overview Guide 36

API Structure and Organization



Namespaces Defined
OneStream is a large and sophisticated software platform and consequently a great deal of effort
went into organizing the code base into a hierarchical set of Namespaces. This section defines
the Namespace hierarchy and explains the primary purpose of the code libraries in each
Namespace. It is important to understand structure and meaning of the platform Namespaces
because most API methods accept and return objects defined within specific Namespaces. By
understanding the structure of the Namespace hierarchy, developers can browse for objects
using intelli-sense in the syntax editor. 

Namespace Hierarchy
The hierarchy below denotes the platform Namespaces and the object libraries contained within
them. This hierarchy is explored from within the Business Rule syntax editor by typing
OneStream. and navigating through the intelli-sense popup lists. This technique helps find objects
to pass into an API function, objects returned from an API function, or common helper classes
available in the platform.

OneStream (Root Namespace)

OneStream.BusinessRule

OneStream.BusinessRule.Finance

OneStream.BusinessRule.Parser

OneStream.BusinessRule.Connector

OneStream.BusinessRule.ConditionalRule

OneStream.BusinessRule.DerivativeRule

OneStream.BusinessRule.DashboardDataSet

OneStream.BusinessRule.DashboardExtender

OneStream.BusinessRule.DashboardStringFunction

OneStream.BusinessRule.Extender

OneStream.Client

OneStream.Client.SharedUI

OneStream.Client.SharedUI.FinanceMsgStrings

OneStream.Client.SharedUI.FinanceUIStrings

OneStream.Client.SharedUI.GeneralMsgStrings

OneStream.Client.SharedUI.GeneralUIStrings

OneStream.Client.SharedUI.StageMsgStrings

OneStream.Client.SharedUI.StageUIStrings

OneStream.Client.SharedUI.StringResourceFileType

OneStream.Client.SharedUI.StringResourceHelper

API Overview Guide 37

API Structure and Organization



OneStream.Client.SharedUI.XFStrings

OneStream.Finance

OneStream.Finance.Engine

OneStream.Finance.Engine.DataApi

OneStream.Finance.Engine.EvalDataBufferDelegate

OneStream.Finance.Engine.FinanceRulesApi

OneStream.Finance.Engine.IAccountApi

OneStream.Finance.Engine.ICalcStatusApi

OneStream.Finance.Engine.IConsApi

OneStream.Finance.Engine.ICubesApi

OneStream.Finance.Engine.IDimensionsApi

OneStream.Finance.Engine.IEntityApi

OneStream.Finance.Engine.IFlowApi

OneStream.Finance.Engine.IFunctionsApi

OneStream.Finance.Engine.IFxRatesApi

OneStream.Finance.Engine.IMembersApi

OneStream.Finance.Engine.IPovApi

OneStream.Finance.Engine.IScenarioApi

OneStream.Finance.Engine.ITimeApi

OneStream.Finance.Engine.IUDApi

OneStream.Finance.Engine.IViewApi

OneStream.Finance.Engine.IWorkflowApi

OneStream.Stage

OneStream.Stage.Engine

OneStream.Stage.Engine.Parser

OneStream.Stage.Engine.ParserDimension

OneStream.Stage.Engine.TransformerDataCache

OneStream.Stage.Engine.Transformer

OneStream.Stage.Engine.TransformerDimension

OneStream.Stage.Engine.TransformRuleCache

OneStream.Shared

OneStream.Shared.Engine

OneStream.Shared.Engine.ExternalWcfClient

OneStream.Shared.Engine.TaskActivityStepWrapperItem

OneStream.Shared.Database

OneStream.Shared.Database.DbConnInfo

OneStream.Shared.Common

API Overview Guide 38

API Structure and Organization



OneStream.Shared.Common.(Various Constants, Helper Classes & Data Transfer Objects ‘DTO’ )

OneStream.Shared.Wcf

OneStream.Shared.Wcf.(Various Constants & Data Transfer Objects ‘DTO’)

Microsoft Financial Calls
Financial calls are part of the Microsoft.VisualBasic namespace, and can be used to for
calculations such as:

l Depreciation

l Present and future values

l Interest rates

l Rates of return

l Payments

These functions are available to anyone with access to Business Rules. They can be explored
within the Business Rule syntax editor by typing Microsoft.VisualBasic.Financial then navigating
through the intelli-sense popup lists.

To view all methods from the Microsoft.Visual Basic Financial class used in a Business Rule:

1. Navigate to the Business Rule Editor:

a. In the OneStream Software application, click the Application tab.

b. Under Tools, click Business Rules.

c. Expand the appropriate Business Rules category or click Search on the toolbar.

2. Click the Formula tab.

3. In the editor window, typeMicrosoft.Visualbasic.Financial.

A list of methods displays.

API Overview Guide 39

API Structure and Organization



See Business Rules for more information.

In-Solution Development
In-solution development is the process of creating OneStream Business Rules to deliver domain
specific solutions.  This means that all Business Rules are executed within the application server
process space.  The code written is only executed on the application servers where OneStream is
deployed. 

Developing within the application server environment enables solution developers to focus on the
business problem instead of common programming concerns.  The platform takes care of
managing connections, moving data between application tiers, and load balancing server
activities.

In some cases, in-solution development is seen as a limitation because the developer is restricted
to coding within the application server tier.  However, in most cases the efficiency and quality
gained by developing within the platform out ways any limitations imposed by coding at the
application server tier.

API Overview Guide 40

API Structure and Organization



Custom Development
Custom development refers to stand alone application development that interacts with the
platform at the web server tier. 

Custom Web Development
The platform has the ability to display web pages within a custom Dashboard.  This allows
completely custom web applications to surface within the OneStream solution. OneStream can
pass information about the user’s POV andWorkflow as URL Parameters enabling the custom
web application to act as part of an integrated solution.

With this capability, developers are free to create and incorporate any solution they can imagine.

API Overview Guide 41

API Structure and Organization



Using System Tools
System Business Rules
System Extender Business Rules are used in coordination with Azure Server Sets for elastic
scalability at the Azure Database and Server Sets level. Server and eDTU scaling can be
accomplished manually or via System Business Rules.  If System Business Rules is selected as a
Scaling Type, then OneStream will call a user-defined System Extender Business Rule to
determine if scaling is needed.  The user is responsible for implementing the scaling function and
returning the proper scaling object to OneStream. This can be accomplished by adding a System
Extender Business Rule and assigning it appropriately.

Under each Case statement, these rules and related Args and BRApis can be used to check the
current Server Set capacity, query metrics about a Server Set or Azure Database and impact the
volume of Server Sets or level of Azure Database deployed.

Refer to the Installation and Configuration Guide under Azure Database Connection Settings and
Server Sets for where to refer to these Business Rules. Example starting point of empty System
Extender Business Rule upon creation:

Sample System Business Rule
Metrics data is passed to this function to help the user determine whether the server or database
needs to be scaled or not.  Depending on what is being scaled, different metric data is passed in. 
For server scaling, Environment metrics and Scale Set metrics are passed in to help determine
scaling.  For database scaling, Environment metrics and SQL Server Elastic Pool metrics are
passed in to help determine scaling.

API Overview Guide 42

Using System Tools



Database
The Database screen allows System Administrators to view all of OneStream’s database tables
and provides tools for managing stored data and other information.

Tables
This gives read-only access to all data tables in the database and can be used for tasks such as
trying to debug issues without having access to the database, or deletion logging.

Tools
Database Tools allow System Administrators to manage the database.

Data Records
Enter a Member Filter in order to view data for the entire system.

API Overview Guide 43

Using System Tools



Event Listing
Event Handler Business Rules
WCF Event Handler
This allows direct interaction with the Microsoft Windows Communication Foundation which
means it listens to communication between the client and the web server. The rule will intercept
the communication, analyze it, and if certain criteria is met, it will run its logic.  This is quite flexible
and has a variety of uses such as creating, reading, deleting, and updating different types of
objects in the system for users in a group or Transformation Rule changes. For example, a rule
can be created to e-mail an auditor about every metadata change as it happens.

Transformation Event Handler
This can be run at various points from Import through Load. Available operations:

StartParseAndTransForm

InitializeTransFormer

ParseSourceData

LoadDataCacheFromDB

ProcessDerivativeRules

ProcessTransformationRules

DeleteData

DeleteRuleHistory

WriteTransFormedData

SummarizeTransFormedData

CreateRuleHistory

EndParseAndTransForm

FinalizeParseAndTransForm

StartRetransForm

EndRetransForm

FinalizeRetransForm

API Overview Guide 44

Event Listing



StartClearData

EndClearData

FinalizeClearData

StartValidateTransForm

ValidateDimension

EndValidateTransForm

FinalizeValidateTransForm

StartValidateIntersect

EndValidateIntersect

FinalizeValidateIntersect

LoadIntersect

StartLoadIntersect

EndLoadIntersect

FinalizeLoadIntersect

Journals Event Handler
This can be run before, during, or after a Journal operation such as Submission, Approval, or
Post. Available operations:

SubmitJournal

ApproveJournal

RejectJournal

PostJournal

UnpostJournal

StartUpdateJournalWorkflow

EndUpdateJournalWorkflow

FinalizeUpdateJournalWorkflow

Save Data Event Handler
This is run in order to track all save events in an application.

API Overview Guide 45

Event Listing



Forms Event Handler
This can be run before, during, or after an operation such as Form Save. Available operations:

SaveForm

CompleteForm

RevertForm

StartUpdateFormWorkflow

EndUpdateFormWorkflow

FinalizeUpdateFormWorkflow

Data Quality Event Handler
This can be run before, during, or after data quality events like Confirmation and Certification.
Available operations:

StartProcessCube

Calculate

Translate

Consolidate

EndProcessCube

FinalizeProcessCube

PrepareICMatch

StartICMatch

PrepareICMatchData

EndICMatch

StartConfirm

EndConfirm

FinalizeConfirm

SaveQuestionResponse

StartSetQuestionairreState

SaveQuestionairreState

API Overview Guide 46

Event Listing



EndSetQuestionairreState

StartSetCertifyState

SaveCertifyState

EndSetCertifyState

FinalizeSetCertifyState

Data Management Event Handler
This can be run before or after a Data Management Sequence or Step runs. Available operations:

StartSequence

ExecuteStep

EndSequence

Workflow Event Handler
This can be run before or after a Workflow execution step. Available operations:

UpdateWorkflowStatus
WorkflowLock
WorkflowUnlock

Event Firing Sequences
OneStream fires a series of events when completing tasks via Event Handler Business Rules. 
The example below explains how to read the table which provides the firing sequence when
running a specific task.

API Overview Guide 47

Event Listing



Clear Cube Data

API Overview Guide 48

Event Listing



API Overview Guide 49

Event Listing



Clear Stage Data

API Overview Guide 50

Event Listing



API Overview Guide 51

Event Listing



Execute Data Management

Import Data Connection

API Overview Guide 52

Event Listing



API Overview Guide 53

Event Listing



Import Excel File

API Overview Guide 54

Event Listing



API Overview Guide 55

Event Listing



API Overview Guide 56

Event Listing



API Overview Guide 57

Event Listing



API Overview Guide 58

Event Listing



API Overview Guide 59

Event Listing



Import Text File

API Overview Guide 60

Event Listing



API Overview Guide 61

Event Listing



API Overview Guide 62

Event Listing



Process Form

API Overview Guide 63

Event Listing



API Overview Guide 64

Event Listing



Process Journal

API Overview Guide 65

Event Listing



API Overview Guide 66

Event Listing



Process Workflow

API Overview Guide 67

Event Listing



API Overview Guide 68

Event Listing



API Overview Guide 69

Event Listing



API Overview Guide 70

Event Listing



API Overview Guide 71

Event Listing



API Overview Guide 72

Event Listing



API Overview Guide 73

Event Listing



API Overview Guide 74

Event Listing



API Overview Guide 75

Event Listing



API Overview Guide 76

Event Listing



API Overview Guide 77

Event Listing



API Overview Guide 78

Event Listing



Finance Functions APIs

API Overview Guide 79

Finance Functions APIs



Member ID
There are many functions that use MemberID as an integer to pass in as a property. These
functions get the current POV of the specific Dimension member to perform a variety of tasks,
such as:

l Get Current Year based on Time POV

o Example: Api.Time.GetYearFromId(api.Pov.Time.MemberId)

l Get Text field value from Entity POV

o Example: Api.Entity.Text(api.Pov.Entity.MemberId, 1)

l Get Account Type based on current Account POV

o Example: Api.Account.GetAccountType(api.Pov.Account.MemberId)

When working with formulas and calculations, it is better to work with MemberId versus Member
Name.

Api.Pov.Time.MemberId
Api.Pov.Time.MemberId is obtained from the Time Member Id for the current POV being executed
during the calculation. The Time.MemberId is stored as an unique integer to represent a single
Time member. The uniqueness is determined by the combination of the Year and Period.

API Overview Guide 80

Member ID



H1 = 001                    

Q1 = 002

M1 = 003            

M2 = 004

M3 = 005

Q2 = 006

M4 = 007

M5 = 008

M6 = 009

H2 = 010

Q3 = 011

M7 = 012

API Overview Guide 81

Member ID



M8 = 013

M9 = 014

Q4 = 015

M10 = 016

M11 = 017

M12 = 018

The Time MemberId is constructed like this:  2019003000

The api.Pov.Time.MemberId is used as a property in many functions. Here are some of the most
common functions:

l api.Time.GetYearFromId

l api.Time.GetPeriodNumFromId

l api.Time.GetNumDaysInTimePeriod

l api.Time.AddTimePeriods

l api.Time.AddYears

Api.Pov.Time.MemberId Usage
Example using api.Pov.Time.MemberId:

ErrorLog result:

Example using api.Pov.Time.MemberId in a working formula:

API Overview Guide 82

Member ID



Api.Pov.Entity.MemberId
Api.Pov.Entity.MemberId is obtained from the Entity Member Id for the current Entity POV being
executed during the calculation. The Entity.MemberId is stored as a unique integer to represent a
single Entity member. The Entity Member Id is also found using the Grid View in the Entity
Dimension Library.

Api.Pov.Entity.MemberId is used as a property in many functions.  Here are some of the most
common functions:

l Get Local Currency Id for current Entity POV.

o Example: api.Entity.GetLocalCurrencyId(api.Pov.Entity.MemberId)

l Get Local Currency Cons Member Name for current Entity POV.

API Overview Guide 83

Member ID



o Example:

api.Entity.GetLocalCurrencyConsMember(api.Pov.Entity.MemberId).Name

l Get value in Text Field for Dimension Members prior to executing formula calculation.

o Example: api.Entity.Text(api.Pov.Entity.MemberId, 1)

l Get Percent Consolidation for Parent Child Relationship and specific to user
localization. Can also determine by Scenario Type and Time.

o Example: api.Entity.PercentConsolidation(api.Pov.Entity.MemberId,
api.Pov.Parent.MemberId, api.Pov.ScenarioTypeId,
api.Pov.Time.MemberId).XFToStringForFormula

l Get Percent Ownership for Parent Child Relationship and specific to user localization. Can
also determine by Scenario Type and Time.

o Example: api.Entity.PercentOwnership(api.Pov.Entity.MemberId,
api.Pov.Parent.MemberId, api.Pov.ScenarioTypeId,
api.Pov.Time.MemberId).XFToStringForFormula

Api.Pov.Entity.MemberId Usage
Example using api.Pov.Entity.MemberId:

ErrorLog Result:

Example using api.Pov.Entity.MemberId in a working formula:

API Overview Guide 84

Member ID



Api.Pov.Account.MemberId
Api.Pov.Account.MemberId is obtained from the Account Member Id for the current Account POV
being executed during the calculation. The Account.MemberId is stored as a unique integer to
represent a single Account member. The Account Member Id is also found using the Grid View in
the Account Dimension Library.

Api.Pov.Account.MemberId is used as a property in many functions. Here are some of the most
common functions:

l Get Account Type based on current Account POV

o Example: api.Account.GetAccountType(api.Pov.Account.MemberId)

l Get value in Text Field for Dimension Members prior to executing formula calculation

o Example: api.Account.Text(api.Pov.Account.MemberId, 1)

API Overview Guide 85

Member ID



Api.Pov.Account.MemberId Usage
Example using api.Pov.Account.MemberId :

ErrorLog Result:

Example using api.Pov.Account.MemberId in a working formula:

API Overview Guide 86

Member ID



Dimension Primary Key - DimPk
DimPk is known as Dimension Primary Key. This is a unique primary key that is assigned to
Dimensions when they are created. It is a combination of the DimTypeId and the DimId.

DimPk is commonly used to identify which Dimension should be used when checking for
members as base members or descendants in a specific Dimension. DimPk is commonly used in
the following functions:

l Get Dimension Primary Key of a Specific Dimension

o Example: api.Dimensions.GetDim("UD1DimName").DimPk

l Check if it is a Base Member of a Specific Ancestor

o Example: api.Members.IsBase(dimPk, ancestorMemberId, baseMemberId,
dimDisplayOptions)

l Get Base Members of Parent from GetMember

o Example: api.Members.GetBaseMembers(api.Pov.UD1Dim.DimPk,
parent.MemberId, Nothing)

DimPK Usage
Example using DimPK :

ErrorLog Result:

Example using api.Pov.UD1Dim.DimPk in a working formula:

API Overview Guide 87

Dimension Primary Key - DimPk



API Overview Guide 88

Dimension Primary Key - DimPk



Dimension Type Id
Dimension Type Id is a property of DimPk. The Dimension Type Id is a unique integer Id that is
assigned to a Dimension. The DimTypeId is found in the Dim table and the DimTypeId represents
each Dimension.

l Entity = 0

l Scenario = 2

l Account = 5

l Flow = 6

l UD1 = 9

l UD2 = 10

l UD3 = 11

l UD4 = 12

l UD5 = 13

l UD6 = 14

l UD7 = 15

l UD8 = 16

The DimTypeId is used in various functions. DimTypeId is most commonly used with the
GetMember or GetMemberId functions where the first property in the function is DimTypeId. In
this case, GetMember and GetMemberId needs to know which Dimension Id to use for the
member the function is looking for.

l Get a specific Member in a specific Dimension

o Example: api.Members.GetMember(DimType.Account.Id, "AcctMemberName")

l Get Member Id for a specific Member in a specific Dimension

o Example: api.Members.GetMemberId(DimType.Account.Id, "AcctMemberName")

API Overview Guide 89

Dimension Type Id



DimTypeID Usage
Example using DimTypeId :

ErrorLog Result:

Example using DimType.Account.Id in a working formula:

API Overview Guide 90

Dimension Type Id



Data Unit Dimension POV
Stored calculations run based on the Data Unit POV. The Data Unit Dimension consists of Cube,
Entity, Parent, Consolidation, Time, and Scenario. 

Because stored calculations run off Data Unit Dimensions, these Dimensions are used as part of
If Statements to execute calculations on conditions. The Data Unit Dimensions should not be
used as destination data buffers, and should not be used on the left hand side of the equation in a
api.Data.Calculate formula.

Account related Dimensions such as Account, Flow, and UD’s are not available at run-time of the
calculations. Therefore, they cannot be used in the If Statements for stored calculations.
However, they are available for Dynamic Calculations. 

Run for POV and Check Member Names for Data Unit Dimensions Before Executing Calculation:

l If api.Pov.Cube.Name.XFEqualsIgnoreCase("CubeName") Then

l If api.Pov.Entity.Name.XFEqualsIgnoreCase("EntityName") Then

l If api.Pov.Scenario.Name.XFEqualsIgnoreCase("ScenarioName") Then

l If api.Pov.Cons.Name.XFEqualsIgnoreCase("USD") Then

Data Unit Dimension POV Usage
Example using api.Pov.Entity.Name :

ErrorLog Result:

Example using api.Pov.Entity.Name in a working formula:

API Overview Guide 91

Data Unit Dimension POV



API Overview Guide 92

Data Unit Dimension POV



Time Functions
The following APIs are some of the most common time functions:

l api.Time.GetYearFromId

l api.Time.GetPeriodNumFromId

l api.Time.GetNumDaysInTimePeriod

l api.Time.AddTimePeriods

l api.Time.AddYears

Api.Time.GetYearFromId
This function gets the year from the current POV Time Id. It evaluates the year and then
introduces logic to execute the formula. 

Api.Time.GetPeriodNumFromId
This function gets the period number from the current POV Time Id. The period is static and is
configured with either months or weeks followed by the period number. For example: M1 – M12 or
W1 –W54. It evaluates the period number and then introduces logic to execute the formula.

Api.Time.GetPeriodNumFromId Usage
Example using api.Time.GetPeriodNumFromId :

API Overview Guide 93

Time Functions



ErrorLog Result:

Example using api.Time.GetPeriodNumFromId in a working formula:

Api.Time.GetNumDaysInTimePeriod
This function gets the number of days from the current POV Time Id. The number of days are
already programmed depending on the month that is selected. It evaluates the number of days for
a period and then introduces logic to execute the formula. 

Api.Time.GetNumDaysInTimePeriod Usage
Example using api.Time.GetNumDaysInTimePeriod:

ErrorLog Result:

API Overview Guide 94

Time Functions



Example using api.Time.GetNumDaysInTimePeriod in a working formula:

Api.Time.AddTimePeriods
This function adds time periods to the current POV Time Id. It passes that data to different
functions like GetPeriodNumFromId and then introduces logic to execute the formula.

Api.Time.AddTimePeriods Usage
Example using api.Time.AddTimePeriods:

ErrorLog Result:

API Overview Guide 95

Time Functions



Example using api.Time.AddTimePeriods in a working formula:

Api.Time.AddYears
This function adds years to the current POV Time Id. It passes that data to different functions like
GetYearFromId or GetPeriodNumFromId and then introduces logic to execute the formula. 

Api.Time.AddYears Usage
Example using api.Time.AddYears:

ErrorLog Result:

Example using api.Time.AddYears in a working formula:

API Overview Guide 96

Time Functions



API Overview Guide 97

Time Functions



Using Member Functions for
Calculations
Calculation Member functions are commonly used through the Finance Api’s for accessing
general information for any specified Member within a dimension. The Member functions allow a
rule writer to identify members, get member information, and identify base and parent members to
execute within Member Formulas and Business Rules.

The following are some of the most common Member functions for calculations:

l GetMember

l GetMemberID

l GetBaseMembers

GetMember
This function gets a specific dimension member. It is used for different functions like
api.Data.FormulaVariables, GetBaseMembers function, custommember lists, and when working
with Member Id within data buffers for processes like custom consolidation.

GetMember Usage
Example using GetMember:

ErrorLog Result:

Example using GetMember in a working formula:

API Overview Guide 98

Using Member Functions for Calculations



GetMemberId
This function gets a specific dimension member Id. This technique is commonly used when
working with source Data Buffers where the cells for a specific member Id need to be changed.

GetMemberID Usage
Example using GetMemberId:

ErrorLog Result:

Example using GetMemberId in a working formula:

API Overview Guide 99

Using Member Functions for Calculations



GetBaseMembers
This function gets base members from a specific parent member. It is commonly used when
working with Member Lists as part of FinanceFunctionType.MemberList, or to get base members
to loop through specific dimensions for api.Data.GetDataCell.

GetBaseMembers Usage
Example using GetBaseMembers:

ErrorLog Result:

API Overview Guide 100

Using Member Functions for Calculations



Example using GetBaseMembers in a working formula:

API Overview Guide 101

Using Member Functions for Calculations



Writing Stored Calculations
When writing a Member Formula or a Business Rule for a Stored Calculation, the new calculated
numbers store data for that Cube, Entity, Parent, Cons, Scenario, and Time combination. For
example, a Data Unit.

Return is never seen in a Member Formula for Formula Pass. Instead of being returned, many
numbers are calculated and stored. When running a Calculation, Translation, or Consolidation, it
calls the Member Formula once for an entire Data Unit.  OneStream does not tell with which
Account, Flow, or User Defined the numbers are being saved.

Initially, this may be confusing because Member Formulas are often written in an account’s
Formula property, and administrators believe OneStream will only allow that specific Member
Formula to write to that specific account. However, putting a Member Formula in an account’s
Formula property is only for organizational purposes. When OneStream calls that formula, it is
currently calculating a Data Unit and will initialize the API engine with only the Data Unit
Dimensions.

Basic stored formulas are commonly used via the Api.Data.Calculate api function. 
Api.Data.Calculate is used in three different ways:

l Api.Data.Calculate using Formula as String, Overload Functions, Eval Function, and
IsDurableCalculatedData

l Api.Data.Calculate using Formula as String and IsDurableCalculatedData

l Api.Data.Calculate using Formula as String and Eval Function

API Overview Guide 102

Writing Stored Calculations



Overload Function
The most common function is Api.Data.Calculate, which sets the value of one or more dimension
values (left side of formula) equal to another (right side). Final arguments (optional) are added to
the formula for Overload Functions, Evals, and Durable Data. 

The Api.Data.Calculate function must abide by the data explosion rules, which means that the left
side and the right side of the formulas are balanced with the same dimension values on both
sides. If a Member is specified for a Dimension anywhere on the right side of the equation, you
must explicitly specify something for that Dimension on the left side of the equation.

This variation of the Api.Data.Calculate provides Member Filters (all optional) which can be used
to filter the results before saving them to the target or destination. This function is the most
powerful of the Api.Data.Calculate functions as it allows you to filter intersections. In addition, the
Eval function adds the ability to filter down the number of individual data cells processed by data
cell attributes such as CellAmount or CellStatus.

This function is commonly used to filter the source data buffer by base members of an Account
related dimension. For example, A#Sales may be the source data buffer but the need for all
products is not required for the calculation. Instead, A#Sales may need to be calculated by the
base members of Clubs. By using Clubs.Base for A#Sales, the A#Sales data buffer has been
reduced to only include Clubs.Base. 

Api.Data.Calculate Usage
Example using Overload Function in a working formula:

API Overview Guide 103

Writing Stored Calculations



IsDurableCalculatedData
This variation of Api.Data.Calculate lets you define whether data is durable or not. Durable data is
not cleared automatically when a Data Unit is re-calculated. It can only be cleared by calling
api.Data.ClearCalculatedData with the clearDurableCalculatedData Boolean property set to
True. As part of the standard Calculation sequence that runs during a Calculate or Consolidate,
Durable data will be ignored from processing the clear, unless the clear is specifically defined
within the Business Rule or Member Formula.

The most common reason to set the IsDurableCalculatedData to True is for seeding purposes. As
part of the first seeding, the goal may be to seed from one Scenario to another just once and
never seed it again. In this case, the seeded data should not be cleared at any point during the
Calculate or Consolidate process. This technique is commonly used in Budget or Forecast
processes where you are executing the seeding through a Dashboard. The formula may be
applied as a FinanceFunctionType.CustomCalculate or a FinanceFunctionType.Calculate in a
Business Rule.

IsCurableCalculatedData Usage
Example using IsDurableCalculatedData in a working formula:

Eval Function
Eval has an advanced capability that lets you get at the individual Data Cells in any Data Unit
created while processing an api.Data.Calculate script. It allows Eval() to be wrapped around a
subset of the formula’s math in order to evaluate the Data Buffer that was just created by running
that math.

API Overview Guide 104

Writing Stored Calculations



Prior to the 5.0 version and the introduction of the RemoveNoData function, Eval was commonly
used to evaluate individual data cells in a source data buffer to process based on cell amount or
cell status. Evaluating the number of No Data Cells for a Data Unit is an important factor for
performance and calculation efficiencies. 

Eval was initially an important function to evaluate individual data cells but it has been replaced
with newer techniques such as GetDataBuffer and GetDataBufferUsingFormula, and looping
through cells within the data buffer, as well as the Remove functions.

Eval Function Usage
Example using Eval in a working formula:

API Overview Guide 105

Writing Stored Calculations



Summary
The Api.Data.Calculate is the easiest and simplest way to write a formula as a Member Formula
or a Business Rule. The construction of an Api.Data.Calculate formula must be balanced on each
side of the formula with the appropriate dimensions to prevent data explosion. There are three
different ways to use the Api.Data.Calculate function: Formula with Overload, Formula with
IsDurableCalculatedData, and Formula with Eval.

From a performance perspective:

1. Never use the Api.Data.Calculate in a loop when using variables.

2. Use Remove functions whenever possible especially for sparse data models with lots of
NODATA cells.

3. GetDataBuffer and GetDataBufferUsingFormula may have a better performance
impact. Try replacing Api.Data.Calculate when doing math with GetDataBuffer math. In
some cases, performance is better by using GetDataBuffer functions in place of
Api.Data.Calculate.

API Overview Guide 106

Summary



Remove Functions
Remove Functions were introduced in the 5.0 release. They replaced the reasons to use the Eval
function. The basic need of the Eval function was to evaluate the individual data cells within a
source data buffer to apply logic for processing. In many cases, OneStream did not want to
process data cells in source data buffers that had a Cell Status of NODATA or Cell Amount = 0.
With the 5.0 release, functions do that without the need for writing additional logic.

The RemoveNoData and RemoveZeros functions provide the ability to not process individual
data cells within a source data buffer. They wrap the Remove() around a subset of the formula to
prevent processing of individual data cells from within a source data buffer. Remove functions are
used in Member Formulas or Business Rules.

Remove functions are used for performance reasons. Data Units may contain a great amount of
NODATA data cells or 0 value data cells. These cells could be needlessly processed during
calculation execution if these functions are not used in a Api.Data.Calculate formula.

RemoveZeros
RemoveZeros is used to remove data cells with a cell amount of 0 from the source data buffer. In
addition, this function removes data cells with a cell status of NODATA from the source data
buffer. It is important to evaluate if the 0s are needed for the Api.Data.Calculate formula during
calculation execution.

RemoveNoData
RemoveNoData removes data cells with a cell status of NODATA ONLY from the source data
buffer. Unlike the RemoveZeros function, this function does not remove data cells with a cell
amount of 0.

NODATA cells and 0 cells can be found using the following methods:

1. Review the Data Unit Statistics when you right-click on a cell in Cube View.

2. Review the Application Analysis Dashboard and check the Entity Data Statistics Report.

API Overview Guide 107

Remove Functions



This is based on the Data Unit and Entity Data Statistics. There may be many Member Formulas
and Business Rules that are driving data creation. Therefore, all formulas would need to be
evaluated to determine whether these Remove functions are used. The higher the percentage
ratio of NODATA cells to Total Number of Stored Records, the more important it is to use these
Remove functions.

Example =  3,203 Stored Records with 2,019 of those Stored Records as NODATA cells. Nearly
65% of the Data Unit has NODATA cells to process which causes extra calculation time.

The Review functions can be found in Key Functions under Snippets.

Remove Functions Usage
Example using RemoveZeros in a working formula:

API Overview Guide 108

Remove Functions



Example using RemoveNoData in a working formula:

API Overview Guide 109

Remove Functions



GetDataBuffer Functions
AMember Script may not be defined for the Api.Data.Calculate function because multiple Data
Cells, which seem completely unrelated to each other, are being processed and none of the
Dimension Members are constant. For those situations, use the GetDataBuffer and
SetDataBuffer functions.

GetDataBuffer and SetDataBuffer are more fundamental than using an Eval function. They allow
you to read numbers using a Member Script, process or modify each cell in the result, and then
save the changes. Common GetDataBuffer functions include:

l GetDataBuffer

l GetDataBufferForCustomShareCalculation

l GetDataBufferForCustomElimCalculation

l GetDataBufferUsingFormula

l SetDataBuffer

When using api.Data.Calculate functions, it is important to know which Member a formula is
attached to. For example, if the formula starts with Api.Data.Calculate(“A#Sales1 =…”), put the
formula in the Sales1 account Member’s Formula setting.

However, when using GetDataBuffer functions, the formula may not be writing to a specific
Member. Every Data Cell saved is possibly written to a different dimension member. In this case,
the logic can be developed in a Business Rule and could be created as a Sub routine to execute
throughout Finance Business Rules.

GetDataBuffer Function
GetDataBuffer retrieves a Data Unit’s values during a particular consolidation, calculation, or
translation. When using GetDataBuffer, this is equivalent to the source data buffer or to the right
side of the equation for Api.Data.Calculate. Depending on which GetDataBuffer function you are
using, three or four properties can be used. 

For the basic GetDataBuffer, three properties are used:

API Overview Guide 110

GetDataBuffer Functions



l ScriptMethodType As DataApiScriptMethodType

l SourceDataBufferScript As String

l ExpressionDestinationInfo As ExpressionDestinationInfo

The scriptMethodType typically uses the Calculate option for DataApiScriptMethodType.

The sourceDataBufferScript is equivalent to the right side of the equation for the
Api.Data.Calculate.

The expressionDestinationInfo is equivalent to the left side of the equation for the
Api.Data.Calculate. Frequently, this gets manipulated using the Dimension Id, passing in the
Dimension Member Id for the data buffer primary key.

The GetDataBuffer can be used in various ways, and is not limited to the following:

1. Use Data Buffers to perform Data Buffer math. In some cases, this can perform better than
an Api.Data.Calculate.

2. Use GetDataBuffer in place of Api.Data.Calculate to use in Sub routines which execute
code and instructions, are stored in memory, and are used within Functions throughout
Finance Business Rules.

GetDataBuffer Usage
Example using GetDataBuffer with Data Buffer Math in a working formula:

Example using GetDataBuffer and SetDataBuffer in Business Rule Using Sub Routine in a
working formula:

API Overview Guide 111

GetDataBuffer Functions



API Overview Guide 112

GetDataBuffer Functions



Unbalanced Math Functions
Unbalanced Math Functions
Unbalanced math functions are required when performing math with two Data Buffers, where the
second Data Buffer needs to specify additional dimensionality. The term Unbalanced is used
because the script for the second Data Buffer can represent a different set of Dimensions from the
other Data Buffer in the api.Data.Calculate text. These functions prevent data explosion. The four
Unbalanced Math functions are:

l AddUnbalanced

o Example: api.Data.Calculate("A#TargetAccount = AddUnbalanced
(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

l SubtractUnbalanced

o Example: api.Data.Calculate("A#TargetAccount = SubtractUnbalanced
(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

l MultiplyUnbalanced

o Example: api.Data.Calculate("A#TargetAccount =MultiplyUnbalanced
(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

l DivideUnbalanced

o Example: api.Data.Calculate("A#TargetAccount =DivideUnbalanced
(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

When using Unbalanced Math functions, the first two parameters represent the first and second
Data Buffers on which to perform the function. The third parameter represents the Members to
use from the second Data Buffer when performing math with every intersection in the first Data
Buffer. The math favors the intersections in the first Data Buffer without creating additional
intersections.

It is important that the dimensionality of the Target (left side of the equation) matches the
dimensionality of the first data buffer on the right side of the equation (argument 1).

Often, these functions would be used when one source data buffer is doing math with a specific
data cell intersection. This could be a rate, driver, or some data cell input.

API Overview Guide 113

Unbalanced Math Functions



Unbalanced Math Functions Usage
Example using MultiplyUnbalanced in a working formula:

GetDataBufferUsingFormula Function
The GetDataBufferUsingFormula function uses an entire math expression to calculate a final data
buffer. GetDataBufferUsingFormula can perform the same data buffer math as
Api.Data.Calculate, but the result is assigned to a variable, where Api.Data.Calculate actually
saves the calculated data. 

GetDataBufferUsingFormula calculates multiple source data buffers first. Then, the result of the
math is stored in memory using a Formula Variable. Finally, the Formula Variable is used
anywhere within the Member Formula or Business Rule. This function is commonly used during
rule writing for Planning Business Rules using MultiplyUnbalanced,  DivideUnbalanced, Trailing
functions such as trailing 12 months, and Allocations. 

When using GetDataBufferUsingFormula, FilterMembers and RemoveMembers are used in
conjunction to shrink down dimensional members in the source Data Buffer.

FilterMembers
FilterMembers change a data buffer and only include numbers for the specified Dimensions. The
first parameter is the starting data buffer. This can be a variable name or an entire math equation
in parentheses. There can be as many parameters as needed to specify Member Filters and
different Member Filters can be used for multiple Dimension types. The resulting filtered data
buffer will only contain numbers that match the Members in the filters.

GetDataBufferUsingFormula Usage
Example using GetDataBufferUsingFormula in a working formula:

API Overview Guide 114

Unbalanced Math Functions



Example using GetDataBufferUsingFormula with FilterMembers and MultipleUnbalanced in a
working formula:

API Overview Guide 115

Unbalanced Math Functions


	Introduction
	Development Technologies
	Programming Language
	User Interface Technology
	Server Technology
	Database Technology
	OneStream API Details and Database Documentation


	Developer Fundamentals
	VB.Net and C#
	In-Solution Documentation
	Business Rules Editor Overview
	Helpful Resources


	Platform Engines
	Workflow Engine
	Stage Engine
	Finance Engine
	Data Quality Engine
	Data Management Engine
	Presentation Engine
	BRApi

	Business Rules
	Anatomy of a Business Rule
	Business Rule Definition
	Business Rule Classifications
	Event Handler Business Rules
	Complex Expressions
	Business Rule Types
	Organizing and Referencing Business Rules


	API Structure and Organization
	Namespaces
	Namespaces Defined
	Namespace Hierarchy
	Microsoft Financial Calls
	In-Solution Development
	Custom Development


	Using System Tools
	System Business Rules
	Database
	Tables
	Tools
	Data Records


	Event Listing
	Event Handler Business Rules
	Event Firing Sequences


	Finance Functions APIs
	Member ID
	Api.Pov.Time.MemberId
	Api.Pov.Time.MemberId Usage

	Api.Pov.Entity.MemberId
	Api.Pov.Entity.MemberId Usage

	Api.Pov.Account.MemberId
	Api.Pov.Account.MemberId Usage


	Dimension Primary Key - DimPk
	DimPK Usage

	Dimension Type Id
	DimTypeID Usage

	Data Unit Dimension POV
	Data Unit Dimension POV Usage

	Time Functions
	Api.Time.GetYearFromId
	Api.Time.GetPeriodNumFromId
	Api.Time.GetPeriodNumFromId Usage

	Api.Time.GetNumDaysInTimePeriod
	Api.Time.GetNumDaysInTimePeriod Usage

	Api.Time.AddTimePeriods
	Api.Time.AddTimePeriods Usage

	Api.Time.AddYears
	Api.Time.AddYears Usage


	Using Member Functions for Calculations
	GetMember
	GetMember Usage

	GetMemberId
	GetMemberID Usage

	GetBaseMembers
	GetBaseMembers Usage


	Writing Stored Calculations
	Overload Function
	Api.Data.Calculate Usage

	IsDurableCalculatedData
	IsCurableCalculatedData Usage

	Eval Function
	Eval Function Usage


	Summary
	Remove Functions
	RemoveZeros
	RemoveNoData
	Remove Functions Usage

	GetDataBuffer Functions
	GetDataBuffer Function
	GetDataBuffer Usage

	Unbalanced Math Functions
	Unbalanced Math Functions
	Unbalanced Math Functions Usage
	GetDataBufferUsingFormula Function
	FilterMembers
	GetDataBufferUsingFormula Usage



