@ OneStream’

Table Views User
Guide

8.2.4 Release

Copyright © 2024 OneStream Software LLC. All rights reserved.

Any warranty with respect to the software or its functionality will be expressly given in the
Subscription License Agreement or Software License and Services Agreement between
OneStream and the warrantee. This document does not itself constitute a representation or
warranty with respect to the software or any related matter.

OneStream Software, OneStream, Extensible Dimensionality and the OneStream logo are
trademarks of OneStream Software LLC in the United States and other countries. Microsoft,
Microsoft Azure, Microsoft Office, Windows, Windows Server, Excel, .NET Framework, Internet
Information Services, Windows Communication Foundation and SQL Server are registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
DevExpress is a registered trademark of Developer Express, Inc. Cisco is a registered trademark
of Cisco Systems, Inc. Intel is a trademark of Intel Corporation. AMDG64 is a trademark of
Advanced Micro Devices, Inc. Other names may be trademarks of their respective owners.

Table of Contents

Table of Contents

Table Views Spreadsheet and Excel Add-In ... 1
OVEeIVIeW 2
Technical Featuresand Setup ... 3
Restrictions ... 3
Table VIeW SIZING ... 4
Table Views Spreadsheet/Excel Ribbon Button ... 5
Table View BusinessRules 7
Spreadsheet Function Types ... 8
Processing Order 8
Using Parameters ... 9
CanModify Data ... 10
Table View Conditions ... 10
Table View Sources ... 11
Table View Business Rule Example ... 11
GetTableView Function Type ... 11
Incorporating Parameters ... 20
Using XFTV Named Ranges ... 20

Table Views User Guide

Table of Contents

S CUNIY 24

SUMMAIY e 27

Sample Table ViewRules File ... 28
Table Views User Guide i

Table Views Spreadsheet and Excel Add-In

Table Views Spreadsheet and
Excel Add-In

The primary purpose of Table Views is to provide a method for accessing or updating relational
data. This data is presented in a dashboard or inside the Excel Add-In. The use of Table Views
enables the designer to work in a more flexible environment to design a form or data collection

tool.

Table Views are not alternatives to other tools, such as the SQL Table Editor or Grid Viewer,
Dashboard Components.

Key Use:
» Designed to collect records from relational tables, or other sources
* Present the information in the Spreadsheet format

« Utilize client-side functionality, found in the Spreadsheet tool, such as calculations and
pick-list validation lists

« Table View Business Rules can be designed to manage the column field records, such as
updates, inserts and deletes.

Design Considerations:
« The current functionality is designed to update records in target tables

« Controlling elements must be designed into the Table View Business Rule by the creator to
ensure data integrity, security and performance

Table View Size Considerations:
* Table Views depends upon the number of rows and row content
« Paging is not supported. Therefore, all rows and content must be returned

* Performance testing and design expectations is to support approximately 8000 KB of data
per Table View.

Table Views User Guide 1

Table Views Spreadsheet and Excel Add-In

Overview

A Table View definition for the Windows Application Spreadsheet Tool or Excel Add-In is defined
in a Business Rule. The Administrator designing the rule can define the rows and columns which
should be returned to the worksheet from the source table presented in the Table View.

The Table View Business Rule can collect data from multiple data sources. For example, a single
worksheet can display a Table View which collects data from two or more sources.

The Administrator has full control over the write back “save” process through Business Rules.
When designing the Table View Business Rule, the BRAPI Authorization functions should be
designed into the Business Rule to control access to the viewing or modifying the data. This can
be applied to the entire table or to specific cells. A workbook can contain multiple Table Views.
These can be on the same worksheet or across worksheet pages.

A single Business Rule file can be used to define multiple Table Views by calling the Business
Rule argument, TableViewName. Additionally, a single named range can be used to manage
table data cells within the Spreadsheet and Excel Add-In using user defined named ranges
(XFTV_*).

Table Views User Guide 2

Technical Features and Setup

Technical Features and Setup

This section will review the various functional elements of the Table Views feature. The design of
Table Views involves having a thorough understanding of the source and target tables to be
viewed or modified. The Administrator developing the Table View will also be required to
understand the requirements needed for the final Spreadsheet form to design the Business Rule
at its most granular level. This will allow the Business Rules to be designed to the most restrictive
level which will maximize security and gain the highest performance.

Restrictions

Table Views should never read or write to OneStream Application controlling tables, such as Data
Tables, Cube Tables or Log Tables.

* AppProperty*
« Attachment*

e Audit*

e Data*

o CalcStatus*
 Certify*

e Confirm*

e Cube*

» Dashboard*

« DataAttachment*
» DataCellDetail*
« DataEntry*

e DataMgmt*

Table Views User Guide 3

Technical Features and Setup

DataRecord*

« DataUnit*

e Dim*

» FileContents*
 Filelnfo*

« Folder*

e Form*

* FxRate*

¢ |CMatchStatus*
e Journal*
 Member*

e Parser*

+ Relationship*®
e SecRoles*

» Stage*

e System*

e Taskflow*

e Time*

o \Workflow*

Table View Sizing

The output interface to the Table View Business Rule is the OneStream Windows Application
Spreadsheet and Excel Add-In.

Table Views User Guide

Technical Features and Setup

Table Views should not be considered as a replacement for other Dashboard tools used with
database tables, such as the SQLTable Editoror the Grid View components which support very
large tables.

The Spreadsheet tool and Excel Add-In does not have a paging function to manage very large
data sets. Therefore, careful testing is recommended to verify the size and performance of the
records being managed with Table Views.

A significant impact on the performance of Table Views is the cell content. Along with the
physical number of rows, the content contained in the cells can dramatically affect performance.
The cell content is the key factor on the impact of the ultimate size on disk.

Table Views Spreadsheet/Excel Ribbon
Button

Table Views is a OneStream Windows Application Spreadsheet and Excel Add-In feature used to
assign a Spreadsheet Business Rule to a worksheet. All Table Views are derived through the
definition of a Business Rule, and only Administrators have the rights to create Business Rules.

™ N A Ay " Quaick Views = z > =+
o L : - =5
taor Ar, ! Spe b
File Home Insert Page Layout Formulas Data Review View Developer Help OneStream
@h Admin ’T‘; [h I D 153 Quick Views ~ Y [3 Object Lookup v/ Display Context Pane
Rsousneamuemognu " I = i [s]CubeViews ~ [g Select Member ~ E§ Preferences
Logon Refresh Refresh Submit Submit Automatic

Workbook Sheet Workbook Sheet EEH Table Views & (B save Offiine Copy B File Explorer
inl

Logon Data Calculation Analysis General Spreading Administration Excel Calculation

1. Open the OneStream Windows Application and select Tools/Spreadsheet or Open your
Excel Add-In.

2. Selectan available cell to begin the Table View range.

3. From the OneStream tool bar, choose the Table Views button.

Table Views User Guide 5

Technical Features and Setup

() Table View Definitions

Table View Name Refers To Table View Business Rule

Remove

Edit

Refresh

Clear

4. Choose the Add button. Selecting ellipsis button from the Table View Business Rule field
allows browsing the available Business Rules. The selection will automatically assign the
Name and Refers To cell intersection. Only Spreadsheet type Business Rules will render

as a Table View.

() Table View Definition g

Name Employees

Refers To =Sheet1!D5

Table View Business Rule ~ Employees \:

® |nsert Or Delete Rows When Resizing Table View Content

Insert Or Delete Columns When Resizing Table View Content

OK Cancel

5. The Table View will render in the worksheet and is associated with a named range.

Table Views User Guide

Technical Features and Setup

File Home Insert Page Layout Formulas Data Review View OneStream XF
lD} [3 E‘ E‘Ij qugj;cek\:::u:) [l Paste POV As XFGetCell E v
Refresh Refresh Submit Submit) N
Workbook Sheet Workbook Sheet 9 Table Views - Convert To XFGetCells P2
Data Calculation Analysis General
612 MR
Al B c | D E] F G H |
1 id First Last Department Employee_Status SSN
21 John Smith Dev Active XXX-XX-1234
32 Jane Smith Dev Active XXX-XX-4567
413 Lisa Kron HR Active XXX-XX-2323
5|4 Henrik Ibsen Sales Active XXX-XX-3345
6|5 Joyce Oates Sales Active XXX-XX-4563
7

6. Choosing the Refresh options will retrieve the most current results from the source table.

Spreadsheet - (New)

File Home Insert Page Layout Formulas Data Review View OneStream XF

A = Quick Views = =]
Ea A lj (2] cube Views) Paste POV As XFGetCell % ~
Refresh [Refresh | Submit Submit) -
Workbook] Sheet Workbook Sheet Table Views . Convert To XFGetCells
Data Calculation Analysis General
F11 | %< [smith

Spreading

R

Preferences

Automatid

Administration | Spreadsheet Calg

Table View Business Rules

Access to Table Views in Spreadsheet and Excel Add-In is limited to the Spreadsheet Business
Rule Type.The purpose of the Business Rule is to establish the source data records to be
displayed. The ability to save a record or field within a record is also completely defined within the
Business Rule. The Table View Business Rules also support Parameters to enable the resulting

Worksheet to be included in complex Dashboards.

Table Views User Guide

Technical Features and Setup

Spreadsheet Function Types

e GetCustomSubstVarsinUse Used to define the interaction with OneStream Dashboard
Parameters

+ GetTableView Used to define the source(s) for the Table View.

+ SaveTableView This function defines the table or cell intersection that should be written to
a target database table

Seiect Case args.FunctionType
Case Is = SpreadsheetFunctionType.Unknown

Case Is = SpreadsheetFunctionType.GetCustomSubstVarsInUse
Return Nothing

Case Is = SpreadsheetFunctionType.GetTableView
Return GetEmployeeDetails(si, args.CustSubstVarsAlreadyResolved)

Case Is = SpreadsheetFunctionType.SaveTableView
Return UpdateEmployeeDeparment(si, args.TableView)
End Select

Processing Order

The Spreadsheet Function Types are designed to manage the processes within a common
Dashboard environment.

1. GetCustomSubstitutionVariables is executed first.

a. Ifthe defined Parameter is contained within the Dashboard, the selection will act as a
bound parameter and will be passed into the business rule.

b. Ifthe defined Parameter is not contained within the Dashboard, it will run/prompt the
user.

Table Views User Guide 8

Technical Features and Setup

c. Additional conditional Parameters will be executed. The Spreadsheet Business
Rules can conditionally execute additional Parameters, based on the results of
resolved Parameters.

2. Once all the Parameters are resolved, the GetTableView function will be processed. This
section will generate the results in the Table View. The Table View will also be evaluated to
determine if there will be any writable conditions. If there a no writeable conditions, which is
the default, any refresh of the Spreadsheet/Table View will restart at the
GetCustomSubstitutionVariables function.

3. Ifthe GetTableView is flagged as a writeable table, the SaveTableView process will be
executed, writing back only the elements specifically defined in the Business Rule.

Using Parameters

The GetCustomSubstitutionVariables function is used incorporate Parameters into the Table
View. Any parameters required are passed in as a list within the Function Type. If the Parameter
is not included in the supporting Dashboard and resolved, for example as a Combo box, the
Parameter will be executed in the Table View to be resolved.

Dim list As New List(Of String)
list.Add("Param_SelectEntity")

Additional Parameters can be included in the Table View to act as a nested, conditional
Parameter using the custSubtVarsAlreadyResolved function. This enables a resolved
Parameter to be evaluated to trigger additional Parameters to execute. The
custSubstVarsAlreadyResolved can conditionally evaluate all resolved parameters to determine
subsequent parameters to be executed.

If custSubstVarsAlreadyResolved.ContainsKey("Param_SelectEntity")
list.Add("Param_SelectDepartment")
End If

Table Views User Guide 9

Technical Features and Setup

Can Modify Data

All Table Views will default to “read only”. The Table View condition for CanModifyData must be
set to True to allow write-back capability. The CanModifyData object is set in the GetTableView
Function Type. Itis only required if any write-back is required based on the current Table View.
The True condition will enable objects to be passed, and enabled, in to the SaveTableView
Function Type. When refreshing a Table View, the SaveTableView Function Type will not be
executed unless the CanModifyData property is set to True.

Dim tableView As New TableView()
tableview.CanModifyData = True '

Table View Conditions

A single Spreadsheet Business Rule can contain multiple Table View definitions. The Table View
Name can be called using the Args.TableViewNameto allow conditionally calling rule functions.

CD Table View Definitions

q
C’ Table View Name Refers To Table View Business Rule Add

¢ StatusList =Sheet1!A1:3D%6 Employees Remove

Case Is = SpreadsheetFunctionType.GetTableView
If args.TableViewName.Equals("Employees™)
Return GetAllEmployeeDetails(si, args.CustSubstVarsAlreadyResolved, False)
End If

Table Views User Guide 10

Technical Features and Setup

Table View Sources

Table View Business Rules can collect a variety of data records as a source. Typically, a source is
defined as a table from a database. It is not limited to a single table but can collect records from
multiple tables. The Table View Business Rule designer can define the source essentially as any
data accessible to the Spreadsheet Business Rules. Similarly, the SaveTableView rules can be
defined to any target accessible by the Business Rules.

Table View Business Rule Example

This is an example only for the purpose of outlining the basic elements of a Table View Business
Rule. By default, a Table View is “read only”. A Spreadsheet Business Rule can be defined to
return a complete table. Always consider the size and content of the table as it may impact
performance. Elements that can impact performance, such as exceeding the ability to render the
Table View, are the total number of rows as well as the content within the records.

GetTableView Function Type

Database Connection

Create connections to sources, such as a database table using business rules.

Dim sql As New Text.StringBuilder
sql.AppendLine("Select * ")
sql.AppendLine("From Employees ™)

Create and fill the data table

Dim dt As DataTable = Nothing

Using dbConnApp As DbConnInfo = BRApi.Database.CreateApplicationDbConnInfo(si)
dt = BRApi.Database.ExecuteSql(dbConnApp, sql.ToString, False)
If Not dt Is Nothing Then dt.TableName = "ContentList”

End Using

Determine if the Table View Requires Write-Back

If the Table View must write-back to a target database or table, the CanModifyData property must
be set to True.

Table Views User Guide 1

Technical Features and Setup

Dim tableView As New TableView()
tableView.CanModifyData = True

Define the Table View Columns

Table columns can be returned for the entire table, or as distinct items. When columns are
defined, they can be returned to the Table View using an alias description as part of a Header

section.

'Create Columns on Table View
"Create a column header
Dim tableViewRowHeader As New TableViewRow()
"Return all columns from the data table
For Each dataColumn As DataColumn In dt.Columns
Dim column As New TableViewColumn()
column.Name = dataColumn.ColumnName
'rename the table column
If column.Name.Equals(“"Employee_Status") Then

column.Value = "Status"
Else
‘return the table column name
column.Value = dataColumn.ColumnName
End If

column.IsHeader = True
tableView.Columns.Add(column)
‘generate column headers based on the column name
tableViewRowHeader.Items.Add(column.Name, column)
Next dataColumn
tableView.Rows.Add(tableViewRowHeader)

Returning Rows to the Table View

Each row cell is evaluated from the data table columns. The designer has full control over the
display of the content of the table using Business Rule functions. In the example below, the
presentation of the results will vary by column, by user using the BRAPI Security Authorization

function.

Table Views User Guide

12

Technical Features and Setup

‘Create Data Row Records
For Each dataRow As DataRow In dt.Rows
Dim tableViewRow As New TableViewRow()
For Each tableViewColumn As TableViewColumn In tableView.Columns

Dim column As New TableViewColumn()

Dim columnValue As String = "

column.Name = tableViewColumn.Name

columnValue = dataRow.Item(tableViewColumn.Name)

‘Condition to limit view of results to only Administrators

If column.Name.Equals(“SSN") Then
If Not BrApi.Security.Authorization.IsUserInAdminGroup(si) Then

columnValue = "XXX-XX-" + columnValue.Substring(7, 4)

End If

End If

column.Value = columnValue

column.IsHeader = False

tableViewRow.Items.Add(tableViewColumn.Name, column)
Next TableViewColumn
tableView.Rows .Add(tableViewRow)
Next dataRow

Return tableView

Security Filtering Results

L1 A | B | C | v | E | L |
First Last Department Status
John Smith Dev Active

Jane Smith Dev Active

Al 8 | ¢ | D | E | F
| 1]Ild First Last Department Status SSN
(2|11 John Smith Dev Active 000-00-1234
| 3 | Dev Active 000-00-4567

Table Views User Guide

Technical Features and Setup

Add New Records

Add new records to a table by assigning a specific range of editable rows at the bottom of the
Table View, which can be used by rules to commit the records into a table. Format the
background area with a fill color to visually indicate the area is enabled for adding new records.

Use the Insert Rows feature to insert empty rows into a table and change the background color.
+ CanModifyData: Set to True to False to determine if the table can contain empty rows.
¢ NumberofEmptyRowsToAdd: Set the number of empty rows to add.

 EmptyRowsBackgroundColor: Set the color of the background.

Dim tableView As New TableView()
tableView.CanModifyData = True
tableView.NumberOfEmptyRowsToAdd = 18
tableView.EmptyRowsBackgroundColor = XFColors.Blue

The following example shows the business rule applied to the table.

A B C D E F
1 |Id First NameLast Name Department
2 John Smith Dev
3 Jane Smith Dev
4 Lisa Kron HR
3 Henrik Ibsen Sales
6 Joyce Oates Sales
7 Sara Flynn Sales
8 John Smith
9
10

g 'y
M| =

—
=

—_ [= —
[ea TN, | L

oo
M @
= <

—
-]

Table Views User Guide 14

Technical Features and Setup

DataType Object for Column Fields

The DataType object allows the designer to define the Column Field as Text or Numeric. This
object references the current XFDataType object. However, not all XFDataType properties are
valid for Table Views. Only Int16, Int32, Int64, Float, Double, Decimal, and Textare valid.

If you do not specify a data type, it will default to Text.

'Add Columns to the Table View
tableView.Columns.Add(CreateTableViewColumn("Id","Id", True))
tableView.Columns.Add(CreateTableViewColumn("First"”, "First Name", True))
tableView.Columns.Add(CreateTableViewColumn("Last", "Last Name", True))
tableView.Columns.Add(CreateTableViewColumn("Department”, "Department™, True))

Dim salaryColumn = CreateTableViewColumn(“Salary", “"Salary", True)
IsalaryColumn.DataType = KFDataType.Decima].]
tableView.Columns.Add(salaryColumn)

In the example below, the Salary column is rendering the Table View Column fields as numeric
values to accurately reflect their nature and will support Spreadsheet based calculations.

(o) | [) [| E [
Ad First NameLast Name Departmel Salary
201 John smith HR 80000.11
32 Jane Smith DEV 70000.12
A3 Lisa Kron DEV 50000.11
5|4 Henrik |Ilbsen HR 50000
&5 Joyce Oates HR 50000.11
Tls Test One DEV 50000
8|7 Test Two DEV 50000
98 Test Three DEV 50000
s Test Four HR 45123.23
10 Test Five DEV 413452345
12i11 Test Six HR 903,123
13
14
15
6|
17

Enable Status Column

The Table View Business Rule can create a dedicated status column. In the example below, it is
My Status column. Use this to classify records for use in conditional business rule logic to drive
behaviors.

Table Views User Guide 15

Technical Features and Setup

In this example, the business rule can define members for a drop-down list defined as Delete,
Archive, and Inactive. The designer creates business rules to perform actions based on the status
of the records, such as delete, or archiving to another table.

Use the Enable Status Column option to manage records for your table.
» statusColumnEnabled: creates a status column in the table view when set to True.

« statusColumnName: string defines the name of the column. If left blank, the default name
“XFTV_Status” will be assigned.

» statusColumnindex: zero-based integer identifies the column where the status is created.
A value above the actual number of columns will assign the Status as the last Column. A
negative number wil assign the Status column as the first column.

« statusColumnValues: creates a list of members to select as a validation in the Status
column. ltis a hidden range at the top of the Table View. If left blank, no list or validation
will automatically be created in the Status column, it will need to be created manually by the
designer.

'If multiple SetCustomStatusColumn statements are set on the same table view, it will take the last statement.
tableView.EnableStatusColumn(True, statusColumnMame, 4, "DELETE,ARCHIVE,INACTIVE")

In the screenshot below, notice the Delete, Archive, Inactive, which is entered in the business
rule.

Table Views User Guide 16

Technical Features and Setup

- ———————— PP ———m —pm————

ES v £
A B C D E F G H J
4 Id First Namelast Name DepartmeiMyStatus
51 John Smith Dev | _'I,}
6 |2 lane Smith Dev DELETE
713 Lisa Kron HR ARCHIVE
8 |4 Henrik Ibsen Sales INACTIVE
95 loyce Oates Sales
10 6 Sara Flynn Sales
117 John Smith Dev
128 lane Smith Dev

Write Back

If the GetTableViewFunction Type is modified to set the Table View property CanModifyDataas
True, theSaveTableView Function will execute. This section is used by the designer to define
which records should write back to the target. The target table does not have to be the same as
the source table.

Control conditions should be designed into the write-back rules for efficiency and performance.
For example, Member Functions, such as IsDirty() can be incorporated to write only the modified
members within the writeable records.

Member Functions
« IsDirty— Condition Check if the item has been modified
* IsHeader— Member record status as a Header record.
« Name — Member label of the data table. Will not reference an alias label.

« OriginalValue— Condition reflects last stored value prior to the Table View refresh

Table Views User Guide 17

Technical Features and Setup

» Value- Reflects the current value present on the Spreadsheet Table View. This can be a
changed, unsaved value.

Dim sql As String
Dim Id As String
Id = ""
Dim department As String
department = ""
Using dbConnApp As DbConnInfo = BRApi.Database.CreateApplicationDbConnInfo(si)
For Each tableViewRow As TableViewRow In tableView.Rows
If tableViewRow.IsHeader = False
For Each tableViewColumn As TableViewColumn In tableView.Columns

If tableViewColumn.Name = "Id"
Id = tableViewRow.Item(tableViewColumn.Name).Value
End If

If tableViewColumn.Name = "Department”
Dim tableViewCellDepartment As TableViewColumn
tableViewCellDepartment = tableViewRow.Item(tableViewColumn.Name)

If tableViewCellDepartment.IsDirty() Then
department = tableViewCellDepartment.Value
Else
department = "
End If
End If

Next tableViewColumn
If Not String.IsNullOrEmpty(department) Then

sql = "Update Employees Set Department = '" & department & "' Where Id = " & Id & " "
BRApi.Database.ExecuteSql(dbConnApp, sql, False)
End If
End If
Next tableViewRow
End Using

Create Table View From Data Table

You can create a Table View from Data Table using the Table View
PopulateFromDataTablefunction. The new function has two additional Boolean properties to
include a Header Row and to utilize the Data Table's Data Type. The function is able to utilize any
Data Table, including those from Dashboard Data Adapters using the GetAdoDataSetForAdapter
function.

Properties:

Table Views User Guide 18

Technical Features and Setup

» tableView.PopulateFromDataTable(data Table , Include Header Row, Include Data Types)

Column Format Object

The ColumnFormat Object allows the Table View Designer to format the content area of a
column, while excluding the Column Header for use as a separately formattable column header
using the HeaderFormat object.

tableView.Columns(1).ColumnFormat.ColumnWidth = 15
* BackgroundColor

e ColumnWidth
¢ FontFamily

* FontSize

* |sBold

* |sltalic
 |sUnderlined
e TextColor

e NumDecimals

* AsPercentage

Header Format Object

The use of the HeaderFormat Object requires the PopulateFromDataTable to include a header or
a scripted data table to define a TableViewRow as IsHeader=True. This function allows a column
headers to be formatted as a row using all the formatting options except NumDecimals and
AsPercentage.

Table Views User Guide 19

Technical Features and Setup

tableView.HeaderFormat.BackgroundColor = XFColors.Navy

Incorporating Parameters

CAUTION: The OneStream Parameters to be bound, or used, in the Spreadsheet Table
View are defined in the GetCustomSubstVarsinUse Function Type. The Parameters
can be resolved as a component within a Dashboard, or they can be an element of the
Table View. Once resolved, the Parameter is passed to the GetTableView Function
Type.

Private Function GetCustomSubstVarsInUse(ByVal si As SessionInfo, ByVal custSubstVarsAlreadyResolved As Dictionary(Of String, String)) #
Try
Dim list As New List(Of String)
list.Add("LastName™)

If custSubstVarsAlreadyResolved.ContainsKey("LastName™)
list.Add("Department®)
End If

Return list
Catch ex As Exception
Throw ErrorHandler.LogWrite(si, Mew XFException(si, ex))
End Try
End Function

Private Function GetEmployeeDetails(ByVal si As SessionInfo, ByVal custSubstVarsAlreadyResolved As Dictionary(Of String, String)) As Takg
Try

Dim sql As New Text.StringBuilder
sql.AppendLine("Select I1d, First, Last, Department ")
sql.AppendLine(“From Employees ")
If custSubstVarsAlreadyResolved.ContainsKey("LastName™)
sql.AppendLine("Where Last = "™ & custSubstVarsAlreadyResolved("LastName™) & "' ")
End If
If custSubstVarsAlreadyResolved.ContainsKey("Department”)

sql.AppendLine(” and Department = '" & custSubstVarsAlreadyResolved("Department”) & ** ")
End If

Using XFTV Named Ranges

The purpose of creating a Spreadsheet using the “XFTV” named range is to manage data cells
with read and write functionality to a Table View. This eliminates much of the work related to

creating dashboards which may require multiple text boxes, labels, combo boxes, business rules

and other controls to manage data across a table.

The XFTV Named Range can be used to link a field to a Table View. For example, a list of

members may be used in a drop-down list. The selected item would then be used to write back to

a required field in a Table View, which would ultimately write to a target data source.

A cell used as a Table View reference must be prefixed with XFTV_ to pass into a Table View.
The structure of the named range is “Prefix_Table View Name_Column Name_Row Number”.
The row number position is a zero-based index.

Table Views User Guide

20

Technical Features and Setup

Example

Sheet1 is designed as an interface or form based on records sourced from a table.

The data cell items are organized on the primary sheet with each being set as a XFTV named

range referencing Sheet2, which is the core Table View.

OneStream XF

File Home Insert Page Layout Formulas Data Review View
= [Q
DmrBReg Q@ K
New Open Save Quick Print Print Encrypt with
v As~¥ Print Preview Password
non Inf
‘IXFTV_SinqIeRowEdilPl.PReqisler_LastName_‘l - | %« | Housman
| A B
1 People Planning Register
2 |Register Id E000206
3 |First Name Alfred
i][ast Name IHousman]_

5 |Job Title Dynamic Accountability Assistant
6 |Wage 87080.000000000

7 |Status Active

8

Sheet 2 is a Spreadsheet as defined by a Table Rule Business Rule

The Table View is added to the sheet and corresponds to the XFTV range definition on Sheet 1.
The XFTV named ranges associate their value to the Table View for read or write processing

dependent upon the Table View rule construction.

File Home Insert Page Layout Formulas Data Review View OneStream XF
-, r

DmRee @ &
New Open Save Quick Print Print Encrypt with

- As+¥ Print Preview Password

Inf

S8 |l T

A | B c [o [E F | 6 | H 1 [T «x

1 _-Reg]sterll) Register|DIWFProfilel WFScenariWFTimeNJobTitle LastName FirstName Wage Bonus FTE

2 |[E000206 O Houston.P BudgetVl 2018 Dynamic AHousman Alfred 87080.000000000

0.04000001.00000002

L [m | n | o | »
GradeleveStatus HireDate HirePeriodTermDate
Active 1/1/1900 1 1/1/1900 :

Table Views User Guide

21

Technical Features and Setup

Modifying the Sheet1 “form” for an additional field simply requires adding a named range.

As an example, the “form” may require an additional field which may be found as a referenced
validation or from the source table view. For example, the “TermDate” field may be required.
Selecting the cell and adding the syntax for the XFTV named range, for the appropriate field, will
incorporate the results into the sheet.

A B C D E

1 |RegisterlD RegisWFProfilWFScenariWFTimeNzlobTitle LastName FirstName Wage Bonu:FTE Grad Statu HireDate HireTermDate Ter
Jr Analyst Rogers Lucia 216390.034 1.0000(5 Activ1/1/1900 1 1/1/1900 12:00:00 AM 0

2 |[E000215 0 HoustonBudgetVl 2018
3

F G H I J K L M N (o] P

| XFTV_SingleRowEditPLPRegister JlermDate Ml fu
at [A f B
of || 1 People Planning Register
1F!| 2 Register Id E000206
Q 3 |First Name Alfred

4 |Last Name Housman
1 5 |Job Title Dynamic Accountability Assistant
s || 6 \wage 87080.000000000

7 |Status Active
or

8
ite|| o
plé

The data will automatically refresh from the defined source. If defined as a write-back field,
changes to the cell can be written back to a target table using the “submit” function.

Table Views User Guide

22

Technical Features and Setup

File Home Insert Page Layout Formulas Data Review View OneStream XF

B14 dlE x|
] A 8 |
|
2 Register Id E000215

3 |First Name Lucia

4 Last Name Rogers

5 Job Title Jr Analyst

6 Wage 216390.000000000

7 |Status Active

8 Term Date 1/1/1900 12:00:00 AM

3
ol

1|

12|

13
14 | |
15, .
16|

17|

18

19

120

Table Views User Guide

23

Security

Security

Security is controlled by the Business Rule Developer in three ways. It is very important that the
business rule designer/author consider data security when creating table views. The session info
object within the rule can be used to restrict/grant data access for the current user. Second, the
writeback functionality will also be controlled within the business rule to the user population
allowed to perform the writeback, as well as the granular level elements which may be modified.
Lastly, the Table View Business Rule itself should be secured for viewing or access outside of the
defined dashboard.

Data level, or Table level, security is incorporated within the Business Rule script. Various BRAPI
functions can be conditionally included in the script to control the read and write functionality each
user will encounter when presented with the Table View. Using Table View Name arguments in
the Business Rule, rather than relying on the default Business Rule Name, will also add an
additional level of security for related to the tables.

4 [T Security
4 [Authorization
X:= |sUserinRole
= IsUserinGroup
= IsUserlnGroup
= IsUserinAdminGroup
= GetUser

X X X X X

= GetUser
» [0 Admin

Business Rule level security should also be utilized to restrict access to those who can edit and
modify the underlying Table View Business Rule. This can be done by using Business Rule
Encryption, which requires specific a user security role. Business Rule Encryption applies
password protection to any Business Rule it is applied to.

Table Views User Guide 24

Security

@ Encrypt Business Rule 0 ox

1. Password must be between 8 and 16 characters
2. Must contain at least one uppercase letter
3. Must contain at least one lowercase letter
4. Must contain at least one number
5. Must contain at least one special character.
Valid special characters are limited to "@&!$#%"*()"
6. No spaces allowed

Password
I

Reenter New Password

OK Cancel

Additionally, the Business Rules for Table Views are stored in the Spreadsheet category. To

control access to user’s access to retrieving the Table Views in their Application Spreadsheet, the
Access Group on each rule should exclude any user who is not a designer.

Properties | Formula

B General
Name
Type
Referenced Assemblies
Is Encrypted
B Security

Access Group

Employees

Spreadsheet

False

Administrators

: Administrators

The Table View function should be called using a condition for the Spreadsheet Table View
Name. The will control all Table View functionality by a defined name, rather than through the

business rule alone.

Table Views User Guide

25

Security

Case Is = SpreadsheetFunctionType.GetTableView
If args.TableViewName = "GetTRXRegister22"
Return GetPLPRegisterUsingRegisterID(si, args.Cust
End If

@ Table View Definition

Name GetTRXRegister22
Refers To =Sheet1!$A%1
Table View Business Rule =~ TableView_PlanningSources U

® |nsert Or Delete Rows When Resizing Table View Content

Insert Or Delete Columns When Resizing Table View Content

Table Views User Guide

Summary

Summary

The Table Views feature is intended to provide a flexible solution for Dashboard “form”
development when an update to a table is required. This business rule-based solution can
manage records from a variety of sources, as well as control the target and granularity of the
write-back records. This feature fully supports Dashboard based Parameters as well as additional
levels of Table View based parameters to build rich Spreadsheet based Dashboard interfaces.

7) ONESTREAM XF Admin, GolfStreamDemo_v18 (http:/localhos
© ® iy

=* Workflow ..T = 4

() Dashboard - dashboard_PLPRegisterSingleEdit

F® Cube Views a | Henrik Ibsen File Page layout Formulas Data Review View OneStream XF

Charlotte Lennox)
Dashboards * . B14 v i fx
Lisa Kron

A B

Home Insert

» & Dynamic Currency | Alfred Housman [p le PI R
. 1 eople Planning Register
» & Dynamic Entity Ag | Victor1 Laszlo1 I - P e
. | 2 Register Id E000211
» & Financial Review | Angel Harrington 3 First Name Angel
» & Financial Review H | Kristin Wilson | 4 Last Name Harrington
b & Legal (1GL) Lucia Rogers | 5 Job Title Programming Manager
M Daniel | 6 'Wage 119376.000000000
» & Security Audit Rep AIELE DA 7 |Status Active
P & Cube View Audit || Alexander Schwartz | 8 |Term Date 1/1/1900 12:00:00 AM
R fi

» & Explore Applicatiol Rodolfo Young R

. Susie Murphy |10
» &% Explore Comment: 1

|| Marcos Guzman 1

» & Explore Data Units

Renee Frazier

Table Views User Guide 27

Sample Table View Rules File

Sample Table View Rules File

Namespace OneStream.BusinessRule.Spreadsheet.TableViewSample

Public Class MainClass
Public Function Main(ByVal si As SessionInfo, ByVal globals As BRGlobals, ByVal api As Object,

ByVal args As SpreadsheetArgs) As Object

Try

Select Case args.FunctionType

Case Is = SpreadsheetFunctionType.Unknown

Case Is = SpreadsheetFunctionType.GetCustomSubstVarsInUse

Return GetCustomSubstVarsInUse(si, args.CustSubstVarsAlreadyResolved)

Case Is = SpreadsheetFunctionType.GetTableView
'The same business rule can support multiple Table Views.
If args.TableViewName.Equals("MyTableViewName")

Return GetMyTableView(si, args.CustSubstVarsAlreadyResolved)

End If

Case Is = SpreadsheetFunctionType.SaveTableView
SaveMyTableView(si, args.TableView)
End Select
Return Nothing
Catch ex As Exception
Throw ErrorHandler.LogWrite(si, New XFException(si, ex))
End Try

End Function

Private Function GetCustomSubstVarsInUse(ByVal si As SessionInfo, ByVal custSubstVarsAlreadyResolved
As Dictionary(Of String, String)) As List(Of String)

Try
'You will be prompted for the value of these variables if they have not been resolved.

Table Views User Guide 28

Sample Table View Rules File

Dim list As New List(Of String)
list.Add("MyTableViewParameterName")
Return list
Catch ex As Exception
Throw ErrorHandler.LogWrite(si, New XFException(si, ex))
End Try

End Function

Private Function GetMyTableView(ByVal si As SessionInfo, ByVal custSubstVarsAlreadyResolved
As Dictionary(Of String, String)) As TableView

Try

Dim sql As New Text.StringBuilder

sql.AppendLine("Select * from MyTable")

'You can use substitution variables that have been resolved within the query.
If custSubstVarsAlreadyResolved.ContainsKey("MyTableViewParameterName")

sql.AppendLine("Where MyFilterColumn = '" & custSubstVarsAlreadyResolved("MyTableViewParameterName") & "'
"y
End If

'Create and fill the data table

Dim dt As DataTable = Nothing

Using dbConnApp As DbConnInfo = BRApi.Database.CreateApplicationDbConnInfo(si)
dt = BRApi.Database.ExecuteSql(dbConnApp, sql.ToString, False)
If Not dt Is Nothing Then dt.TableName = "NoData"

End Using

'Create the Table View object
Dim tableView As New TableView()
'This allows the Table View data to be updated. This is set to False by default.

tableView.CanModifyData = True

'Create Columns on Table View using the Data Table columns.
'Adding a header row to the Table View is optional
Dim tableViewRowHeader As New TableViewRow()

For Each dataColumn As DataColumn In dt.Columns

Table Views User Guide 29

Sample Table View Rules File

'You can conditionally hide a column

'"If Not Convert.ToString(dataColumn.ColumnName).Equals("MyColumnToHide")
Dim column As New TableViewColumn()
column.Name = dataColumn.ColumnName
column.Value = dataColumn.ColumnName
column.IsHeader = True
tableView.Columns.Add(column)
tableViewRowHeader.Items.Add(column.Name, column)

"End If

Next dataColumn

tableView.Rows.Add(tableViewRowHeader)

'Create Column Data Rows
For Each dataRow As DataRow In dt.Rows
Dim tableViewRow As New TableViewRow()
For Each tableViewColumn As TableViewColumn In tableView.Columns
Dim column As New TableViewColumn()
Dim columnValue As String = ""
column.Name = tableViewColumn.Name
columnValue = dataRow.Item(tableViewColumn.Name)
'You can show/hide/mask column conditionally (e.g. based on the user group)
If column.Name.Equals("MySensitiveData") Then
If Not BrApi.Security.Authorization.IsUserInAdminGroup(si) Then
columnValue = "Not Available"
End If
End If
column.Value = columnValue
column.IsHeader = False
tableViewRow.Items.Add(tableViewColumn.Name, column)
Next TableViewColumn
tableView.Rows.Add(tableViewRow)
Next dataRow
Return tableView
Catch ex As Exception
Throw ErrorHandler.LogWrite(si, New XFException(si, ex))
End Try

End Function

Table Views User Guide 30

Sample Table View Rules File

Private Function SaveMyTableView(ByVal si As SessionInfo, ByVal tableView As TableView) As Boolean
'Add code to check if the user has permission to write data.
If Not tableView Is Nothing
Dim sql As String = String.Empty
Dim tableViewMyPrimaryKey As New TableViewColumn()
Dim tableViewMyColumnToUpdate As New TableViewColumn()
Using dbConnApp As DbConnInfo = BRApi.Database.CreateApplicationDbConnInfo(si)
For Each tableViewRow As TableViewRow In tableView.Rows
If tableViewRow.IsHeader = False
For Each tableViewColumn As TableViewColumn In tableView.Columns
If tableViewColumn.Name = "MyPrimaryKey"
tableViewMyPrimaryKey = tableViewRow.Item(tableViewColumn.Name)
End If
If tableViewColumn.Name = "MyColumnToUpdate"
tableViewMyColumnToUpdate = tableViewRow.Item(tableViewColumn.Name)
End If
Next tableViewColumn
'Update the column value only if the value was changed.
If tableViewMyColumnToUpdate.IsDirty()
'Create audit records as needed before and after updating data.
sql = "Update MyTable Set MyColumnToUpdate = '" & tableViewMyColumnToUpdate.Value & "' Where
MyPrimaryKey = " & tableViewMyPrimaryKey.Value & " "
BRApi.Database.ExecuteSql(dbConnApp, sql, False)
End If
End If
Next tableViewRow
End Using
End If
Return True
End Function
End Class

End Namespace

Table Views User Guide

	Table Views Spreadsheet and Excel Add-In
	Overview

	Technical Features and Setup
	Restrictions
	Table View Sizing
	Table Views Spreadsheet/Excel Ribbon Button
	Table View Business Rules
	Spreadsheet Function Types
	Processing Order
	Using Parameters
	Can Modify Data
	Table View Conditions

	Table View Sources
	Table View Business Rule Example
	GetTableView Function Type

	Incorporating Parameters
	Using XFTV Named Ranges

	Security
	Summary
	Sample Table View Rules File

