
Smart Integration

Connector Guide

8.5.0 Release

Copyright © 2024 OneStream Software LLC. All rights reserved.

Any warranty with respect to the software or its functionality will be expressly given in the
Subscription License Agreement or Software License and Services Agreement between
OneStream and the warrantee. This document does not itself constitute a representation or
warranty with respect to the software or any related matter.

OneStream Software, OneStream, Extensible Dimensionality and the OneStream logo are
trademarks of OneStream Software LLC in the United States and other countries. Microsoft,
Microsoft Azure, Microsoft Office, Windows, Windows Server, Excel, Internet Information
Services, Windows Communication Foundation and SQL Server are registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. DevExpress is a
registered trademark of Developer Express, Inc. Cisco is a registered trademark of Cisco
Systems, Inc. Intel is a trademark of Intel Corporation. AMD64 is a trademark of Advanced Micro
Devices, Inc. Other names may be trademarks of their respective owners.

Table of Contents

Revision History 1

About This Guide 6

Benefits 7

Common Understanding 7

OneStream Client Application Terms 8

OneStream Local Gateway Configuration Terms 11

Architecture 12

TLS/SSL Certificate 15

Additional Considerations 16

Requirements 18

OneStream Smart Integration Connector Environment Setup 18

Advanced Networking and Whitelisting 20

Upgrade Smart Integration Connector 21

Upgrade from 21

Migration from VPN Considerations 24

Setup and Installation 26

Smart Integration Connector Setup Overview 26

Gateway Terms 27

Smart Integration Connector Guide i

Table of Contents

Local Gateway Server Installation 33

Create a Database Connection Gateway 35

Create a Direct Connection Gateway (Optional) 37

Export and Import the Gateway Configuration 41

New Gateway Key Generation 43

Connect a Local Gateway to a Data Source 44

Microsoft SQL Server 46

MySQL Data Provider 47

Oracle Database Examples 48

PostgreSQL (Npgsql Data Provider) 51

OleDb Data Provider 52

ODBC Data Provider 53

(Optional) Remove UserID and Passwords by Integrated
Security 55

Microsoft Entra Authentication for Azure SQL 59

Restart OneStream Smart Integration Connector Gateway 60

Load Balanced Local Gateway Servers 61

Create a Load Balanced Local Gateway Server 62

Define Custom Database Connections in OneStream System
Configuration Setup 64

Smart Integration Connector Guide ii

Table of Contents

Smart Integration Additional Settings 67

Local Application Data Settings 67

Referenced Assemblies Folder 67

Record Count Adjustments 68

Local Configuration Parameters 70

Log Settings 71

Advanced Networking and Whitelisting 74

Restrict Traffic to the Azure Relay 74

Whitelist Outbound Traffic to Azure Relay Service from your
Firewall 75

Allow Traffic using Wildcard Domain (Best Practice) 75

Allow Traffic using IP addresses (Not Recommended) 75

Use Smart Integration Connector 77

Examples 77

Data Adapters Example 77

SQL Table Editor Example 78

Grid View Example 79

Perform a Drill Back 80

Perform a Write Back 83

Support for SFTP 87

C# SFTP Example 89

Smart Integration Connector Guide iii

Table of Contents

VB STFP Example 90

Transferring Files from Local FileShare 92

Step 1 - Setup the Remote Server / Remote Share 92

Step 2 - Pull file from Extender Business Rule 93

Step 3 - Automate from Data Management / Task Scheduler 97

Obtain Data through a WebAPI 97

Single WebAPI Connection 97

Multiple WebAPI Connections 101

Sending Email through Smart Integration Direct Connections 102

Support for DLL Migration 104

Support for ERPConnect (SAP) 105

Business Rules 109

ExecRemoteGatewayRequest 110

ExecRemoteGatewayCachedBusinessRule 114

ExecRemoteGatewayJob 116

ExecRemoteGatewayBusinessRule 121

GetRemoteDataSourceConnection 131

GetRemoteGatewayJobStatus 132

GetSmartIntegrationConfigValue 136

GetGatewayConnectionInfo 137

Smart Integration Connector Guide iv

Table of Contents

Check OneStream Version 138

BRApi.Utilities.IsGatewayOnline 139

Business Rules Compatibility 142

BRApi.Database.SaveCustomDataTable 142

BRApi.Database.InsertOrUpdateRowBRApi.Database.DeleteRows144

SQL Bulk Copy 144

SQL Transactions 144

Limitations 145

Parquet Format Transfer 145

Load Balanced Local Gateway Servers 145

Returning Multiple DataTables with Remote Business Rules 145

Custom Email Connections 145

FTP Transfers 146

SQL Table Editor 146

Precision using Decimals 146

Troubleshooting 148

Gateway Testing Issue Resolution 148

Error Log 150

Common Errors 151

Memory Issues 151

Smart Integration Connector Guide v

Table of Contents

Gateway Version is Empty 152

Custom Data Source Names 152

Array cannot be null Error 153

Opening and Saving Configuration Errors 154

Incorrect or Missing Library References 154

Script Error During Upgrade 155

Data Returned as a String 155

Manual Start and Stop 156

Remote Endpoint Not Found/Could Not Decrypt 157

Connections Requiring a Signed Certificate 158

Trusted Certificate Chain 158

Gateway Unable to Connect 159

Communication Error 159

Host Header Communication Error 160

Frequently Asked Questions 162

Smart Integration Connector Guide vi

Table of Contents

Revision History

Date Release Summary of Changes

09 Dec, 2024 8.5.0 Updated for release features, including the

following enhancements:

l Added ability to mask and encrypt

Configuration Parameter Values.

l Connection strings greater than 245

characters now will encrypt.

l Removed redundant copying of DLLs in the

"Referenced Assembly" folder upon service

startup.

l Version number is now displayed in the title

bar.

l Added Frequently Asked Questions to the

documentation. See Frequently Asked

Questions.

Smart Integration Connector Guide 1

Revision History

Date Release Summary of Changes

22 Aug, 2024 8.4.0 Updated for release features, including the

following enhancements:

l Improved performance and reliability of

multi-threaded / parallel processing for larger

payloads.

l Streamlined process of setting up a

redundant Gateway Server.

l The active Gateway Server is now displayed

within the Gateway Setup in the Windows

App.

l For Remote Business Rules, the number of

rows returned per query threshold has

increased to 5M / 5GB of data.

l Added ability to check if the gateway is online

via a BRAPI.

Smart Integration Connector Guide 2

Revision History

Date Release Summary of Changes

17 Mar. 2024 8.2.0 Updated for release features, including the

following enhancements:

l Query results that contain NULL values are

now being returned.

l Added ability to mask the password when

creating a database connection string.

l Queries that run longer than 10 minutes will

consistently return data.

l Improved the reliability of multi-threaded

connections.

l Smart Integration Connector Local Gateway

Configuration Utility will automatically open

the configuration file for non-default install

locations.

l DataTable / Datasets can now be sent via a

Remote Business Rule.

21 Nov. 2023 8.1.0 Updated to addWebAPI examples.

Smart Integration Connector Guide 3

Revision History

Date Release Summary of Changes

17 Nov. 2023 8.1.0 Updated for release features, including the

following enhancements:

l Customers can test their Smart Integration

Connector Gateways during set-up to ensure

there is nothing blocking port 443.

l The default Referenced Assemblies folder is

in C:\Program Files\OneStream

Software\OneStream Gateway\Referenced

Assemblies.

l The database connection strings in the

OneStream Local Gateway Configuration

are encrypted when saved.

l Specific IPs or CIDRs (a range of IPs) can be

whitelisted from the OneStreamWindows

Client Application.

l The OneStream Local Gateway

Configuration utility automatically opens the

configuration file for the user.

Smart Integration Connector Guide 4

Revision History

Date Release Summary of Changes

21 Aug. 2023 8.0.0 With this release, Smart Integration Connector is a

General Availability feature.

Updated for release features, including the

following enhancements:

l The 2GB .NET limit and 1 million return rows

is increased to 5GB and 5 million return

rows.

l Business rules decompress automatically.

Smart Integration Connector Guide 5

Revision History

About This Guide

This guide is intended for OneStream administrators and IT professionals. It describes

how to manage Smart Integration Connector to connect local data sources to your

OneStream Cloud instance. OneStream Cloud Operations and Support can assist with

the tasks needed to set up Smart Integration Connector:

l Installing or upgrading to OneStream platform version 8.5.

IMPORTANT: The Smart Integration Connector Local Gateway Server

version 8.5 is required to use with OneStream 8.5. Previous versions of

Local Gateway Server will not communicate with OneStream 8.5.

Upgrade your Local Gateway Server to v8.5 to continue using Smart

Integration Connector. It is recommended to always keep your Local

Gateway version number and platform version number in sync.

l Installing Smart Integration Connector Local Gateway Server in your environment.

Smart Integration Connector Guide 6

About This Guide

Benefits

OneStream applications are strategic components in your financial environment. Data

from financial systems is imported to OneStream and contributes to financial closing and

reporting processes. While performing analysis, you leverage data lineage capabilities to

make contextual associations to data sources in your network.

You will need to set up and configure data sources that may be accessed by OneStream

processes. Traditionally, data connectivity between a OneStream Cloud instance and

local data sources is established using a Virtual Private Network (VPN) and all data source

credentials and supporting files are located on OneStream application servers.

The goals for Smart Integration Connector are to establish all required data source

connections without VPN and establish residency and management of data source

connections solely in your network.

With Smart Integration Connector, you can:

l Securely establish connectivity between OneStream Cloud and data sources in

your network without a VPN connection.

l Create and manage network data source integration using OneStream

administration interfaces.

l Locally manage database credentials and ancillary files.

Common Understanding

Use the reference charts below to understand common terms used throughout the

product and this document.

Smart Integration Connector Guide 7

Benefits

OneStream Client Application Terms

Term Definition

OneStreamWindows Application

client

The Windows client facilitating user interface

access for all user personas to OneStream

applications.

OneStreamWindows Application

Server (App Server)

The application server executing all

OneStream business logic and processing.

Gateway Gateways define direct channels of

integration between the OneStream Cloud

and a local customer network. Gateways are

represented by a unique gateway key and are

configured for communication to an Azure

Relay endpoint. Gateways carry a 1:1

correlation to a local gateway. The channel of

communication established from the

OneStream gateway and a local gateway

created in Smart Integration Connector.

Gateway Server A gateway server carries no unique technical

definition or configuration address. It is a node

in the tree control UI to organize gateways

and typically corresponds to an installed local

gateway server name.

Smart Integration Connector Guide 8

Benefits

Term Definition

Custom Database Connections Custom database connections define a

named data source to which OneStreammay

connect using Smart Integration Connector

for the purpose of data import, data export, or

drill through querying. The named custom

database connection is referenced in

OneStream business logic (data management

objects or business rules) to initiate data

source connectivity. Credentials and ancillary

files required for a designated data source

connection are configured to and reside on

the corresponding local gateway server.

Direct Connection (for example,

SFTP, WebAPI)

A direct connection represents a point-to-

point channel to designated resources such

as an sFTP server or Web API (including

iPaaS services). The OneStream Local

Gateway Server Configuration Utility UI

facilitates configuration of mapped

connections to resources where the on-

premises TCP port is mapped to a server

(hostname/IP).

Smart Integration Connector Guide 9

Benefits

Term Definition

Database Connection A database connection represents the

ultimate datasource destination for Smart

Integration Connector. A local gateway

connection may be a designated database.

The OneStream Local Gateway Server

Configuration Utility facilitates configuration of

required credentials and supporting files. The

identification of a local gateway connection

must correspond to a custom database

connection established to the OneStream

Application Server.

Smart Integration Function

(Remote Business Rule)

A Smart Integration Function (Remote

Business Rule) is created in the Windows

Desktop Client and compiled and executed on

the local gateway server.

Whitelist (Whitelisting) Whitelisting can be applied to the Relay via IP

addresses in the OneStreamWindows

Application client and also applied to your

firewall via namespaces through your IT

Admin.

Smart Integration Connector Guide 10

Benefits

OneStream Local Gateway Configuration Terms

Term Definition

Local Gateway Server Smart Integration Connector requires a client

installation onWindows servers to establish a

local gateway server. The local gateway

server houses one or more local gateways

which are configured through the OneStream

Local Gateway Configuration.

Local Gateway Local gateways define the local customer

endpoint for distinct channels of

communication used by Smart Integration

Connector. A local gateway facilitates

connections to local databases, Web API

connections, iPaaS servers, or sFTP servers

and corresponds 1:1 with a gateway definition

on the OneStream Application Server. To

ensure a valid connection, a local gateway

must be configured by importing the

corresponding gateway definition exported

from the OneStreamWindows Application

client.

Smart Integration Connector Guide 11

Benefits

Term Definition

Local Gateway Connections Local gateway connections are the database

connections defined in the utility and confirm

the connection between the local gateway

and the local data sources.

OneStream Local Gateway

Configuration

This utility is where you configure the Local

Gateway Server, Local Gateways and Local

Gateway Connections to data sources.

Architecture

In contrast to a direct data source connection established using a VPN, Smart Integration

Connector makes an indirect connection to data sources. Smart Integration local

gateways integrate with on-premises customer environments through a cloud hosted

service called Azure Relay. The locally installed and configured local gateway server

makes the direct connection to data sources and responds to the OneStream

application.

Smart Integration Connector Guide 12

Benefits

NOTE: In OneStream, Custom Database Server Connections define the

connection through the gateway to the data source.

The two primary services of Smart Integration Connector are:

l OneStream Application Server: The application server brokers communication

between the OneStream Cloud instance application and the Azure Relay service.

l Local Gateway Server: Instances of the Smart Integration Connector Local

Gateway Server are installed inside your network and configured to make direct

connections to designated data sources. The Smart Integration Connector Local

Gateway Server runs as a Windows service and brokers communication between

local data sources and Azure Relay using an outbound connection over port 443. All

communication is encrypted end to end through TLS.

The components of the Smart Integration Connector are:

l OneStream Windows Application client

Direct and Database connections (Gateways) configured through

System > Administration > Smart Integration Connector.

NOTE: The SmartIntegrationConnectorAdminPage role must be

assigned to a user for this to be visible.

l A Custom Database Connection to the local gateway data source. Custom

Database Connections are configured in

System > System Configuration > Application Server Configuration > Database

Server Connections.

Smart Integration Connector Guide 13

Benefits

NOTE: The ManageSystemConfiguration role must be assigned to a

user for this to be visible.

l OneStream Smart Integration Connector Local Gateway Server

l Local Gateway Settings provide the connection information to establish the

gateway connection to the OneStream Windows Application. Gateway

settings are exported from the gateway settings in the OneStream Windows

Application and imported to the Local Gateway section of the OneStream

Local Gateway Configuration.

l Local Gateway Connections provide the setup information necessary for the

Smart Integration Connector Local Gateway to connect to local data sources.

Local Gateway Connections are set up through the OneStream Local

Gateway Configuration in the Gateway Connections Settings section.

Smart Integration Connector Guide 14

Benefits

TLS/SSL Certificate

Communication between the OneStream Application Server(s) is encrypted end-to-end.

For additional information about certificates and certificate errors, see Troubleshooting.

Database Connection example:

Smart Integration Connector Guide 15

Benefits

Direct Connection example:

NOTE: Certificate errors in the OneStream Application Server caused by a

domain name mismatch between the WebAPI domain name and

OneStream hostname are ignored. This occurs because the business rule

uses localhost:{boundPort} for the hostname and the response

contains a certificate with a hostname specific to the API (for

example,someapi.org).

Additional Considerations

l To provide high availability there can be multiple instances of a designated local

gateway server, each running on a separate server bound to the same gateway.

Smart Integration Connector Guide 16

Benefits

l Multiple local gateways can be installed to establish global connectivity to data

sources in different subnetworks.

l Local gateway configuration must align to the corresponding gateway as defined in

the OneStream Windows application. An export process from the OneStream

Windows application gateway user interface can assist with the alignment to

ensure corresponding names and keys are identical.

Smart Integration Connector Guide 17

Benefits

Requirements

OneStream Smart Integration Connector

Environment Setup

l Install compatible versions of the OneStream application and Smart Integration

Connector Local Gateway Server. It is recommended to install matching versions of

the applications.

IMPORTANT: The Smart Integration Connector Local Gateway Server

version 8.5 is not compatible with OneStream version 8.4 or earlier.

l To install or upgrade OneStream to the latest version, see Setup and

Installation.

l To install or upgrade Smart Integration Connector Local Gateway Server to

the latest version, see Upgrading Smart Integration Connector.htm.

NOTE: Although OneStream version 8.5 is designed to be

compatible with Smart Integration Connector Local Gateway

Server version 8.4, performance and functionality cannot be

guaranteed. Upgrading to version 8.5 is recommended.

l Work with your IT team to install the latest version of the Smart Integration

Connector Local Gateway Server in an appropriate environment.

Smart Integration Connector Guide 18

Requirements

l Windows Server 2019+

l .NET Framework 4.8

l 2 newer generation CPU cores (or equivalent virtual processors)

l Memory (RAM)

l Minimum 16GB for queries / jobs returning less than 1M / 3M rows or 1GB

/ 3GB of data respectively.

l Minimum 32GB for queries / jobs returning less than 5M / 15M rows or

5GB / 15GB of data respectively.

NOTE: Memory and processor requirements are driven by the

frequency and volume of remote data accessed through the

gateway service or if remote business rules / long running jobs

are leveraged. For queries returning over 1 million records, 32 GB

or more RAM is recommended.

l The installer requires administrative permission on the server to perform the

installation.

l See Smart Integration Connector Local Gateway Server Installation.

l Create a valid Gateway of type Database Connection to be used as the baseline

communication between OneStream Cloud and the Smart Integration Connector

Local Gateway Server. See Create a Database Connection for more information.

l Be a OneStream administrator to configure corresponding data sources in the

OneStream environment.

Smart Integration Connector Guide 19

Requirements

Advanced Networking and Whitelisting

It is a best practice to filter and/or whitelist network traffic for the Smart Integration

Connector, you will need to work with your IT team to restrict this traffic. See Advanced

Networking / Whitelisting for more information. For any additional questions, please

reach out to Customer Support.

Smart Integration Connector Guide 20

Requirements

Upgrade Smart Integration Connector

The following section describes how to upgrade Smart Integration Connector.

IMPORTANT: The Smart Integration Connector Local Gateway Server

version 8.5 is required to use with OneStream 8.5. Previous versions of Local

Gateway Server will not communicate with OneStream 8.5. Upgrade your

Local Gateway Server to v8.5 to continue using Smart Integration

Connector.

Upgrade from

l Private Preview versions 7.2, 7.3,

l Limited Availability version 7.4, or

l General Availability versions 8.x to 8.4

As part of the upgrade, you can expect the following:

l A copy of the original configuration file from the prior version will be saved.

l Existing gateways should continue to function as they did prior to the install.

l If the Smart Integration Connector Windows Service is running, then the service will

automatically be started after install.

IMPORTANT: OneStream 8.5 will only communicate with Smart

Integration Connector Local Gateway Server 8.5.

If you perform an upgrade and have issues or do not achieve these results, contact

OneStream Support.

Smart Integration Connector Guide 21

Upgrade Smart Integration Connector

1. Install the latest version of OneStream. The latest version can be requested and

scheduled through the OneStream Software Cloud Customer Service Catalog.

Make a note in the details section of the ticket that you want to install and configure

the Smart Integration Connector.

2. Download the Smart Integration Connector install (OneStream_Connector_

#.#.#.zip) file from the Platform section of the Solution Exchange.

3. Extract the OneStreamSmartIntegrationConnectorGateway-#.#.#.#####.msi from

the downloaded zip file.

4. Back up a copy of your configuration folder and sub folders before upgrading.

Default is: C:\Program Files\OneStream Software\OneStream Gateway\.

5. Follow the steps in Setup and Installation to complete your upgrade.

NOTE: If the upgrade process is interrupted or canceled, the Smart

Integration Connector must be reinstalled.

If the Smart Integration Connector Windows Service was configured to start using a

custom service account prior to upgrading, confirm that the service is set to start using

the correct service account after the upgrade is completed.

Smart Integration Connector Guide 22

Upgrade Smart Integration Connector

https://onestreamsoftware.service-now.com/sp_cloud?id=sc_category&sys_id=23e2971edbf9501039a0d6fa4b961931&catalog_id=-1&spa=1
https://solutionexchange.onestream.com/dashboard/home/browse

NOTE: For OneStream Local Gateway Server version 8.1 and above, the new

default location for Reference Assembly Folder is C:\Program

Files\OneStream Software\OneStream Gateway\Referenced Assemblies.

Prior to v8.0, it was required that a OneStream Business Rule developer invoking a

remote Smart Integration Function be aware of the data type returned and convert

accordingly after the result is returned.

Example: An example where the returned result was a byte

array involved code that appeared as follows:

bytesFromFile = CompressionHelper.InflateJsonObject(Of System.Byte())
(si,objRemoteRequestResultDto.resultDataCompressed)

The Smart Integration Connector Gateway now provides this type of information back to

OneStream and streamlines this conversion process using a newly added property

called ObjectResultValue, which is populated.

When invoking the same operation shown above that previously required the type to be

converted, a BR developer can do the following:

bytesFromFile = objRemoteRequestResultDto.ObjectResultValue

bytesFromFile = CompressionHelper.InflateJsonObject(Of System.Byte())
(si,objRemoteRequestResultDto.resultDataCompressed)

bytesFromFile = objRemoteRequestResultDto.ObjectResultValue

Smart Integration Connector Guide 23

Upgrade Smart Integration Connector

Migration from VPN Considerations

If you are migrating from a VPN solution to Smart Integration Connector, there are items

to take into consideration. Use the checklist below to prepare yourself for migrating from

VPN to Smart Integration Connector.

NOTE: While migrating, a VPN and Smart Integration Connector can be used

in tandem. This allows for A/B testing and validation prior to disconnecting

the VPN tunnel.

Checklist Item Complete

Check if your VPN connection is used for securing authentication

paths to OneStream. Smart Integration Connector is not providing

this capability, however other considerations such as whitelisting IP

access are options see Modify Inbound Client Access Rules.

□

Determine how many VPN connections exist. If OneStream is

integrating with data sources from multiple subnetworks, you may

have multiple VPN connections. This configuration can be

managed with multiple Local Gateway Servers.

□

Smart Integration Connector requires the installation and operation

of a Local Gateway Service. Make sure you have identified a Virtual

Machine or physical server to operate the Local Gateway

Server. See Requirements.

□

Smart Integration Connector Guide 24

Migration from VPN Considerations

https://onestreamsoftware.service-now.com/sp_internal?id=sc_cat_item&table=sc_cat_item&sys_id=9e4c18c81b156d100020a935604bcb7f

Take inventory of what you currently use for example, business

rules, workspaces, queries, grid views, drill-backs, and whitelisted

endpoints for each plan for any updates needed when using Smart

Integration Connector.

□

Set up a time with your OneStream Cloud Support Representative

to plan when the VPN can be disconnected.

□

Smart Integration Connector Guide 25

Migration from VPN Considerations

Setup and Installation

Smart Integration Connector Setup Overview

You must set up Smart Integration Connector in this order:

1. Install the OneStream Smart Integration Connector Local Gateway Server

(OneStreamSmartIntegrationConnectorGateway.msi) on a Windows Server 2019+

in your environment.

2. Create a gateway in the OneStream Windows application to connect OneStream

Cloud instance to a Local Gateway on the Local Gateway Server.

3. Export the gateway configuration and import this configuration to the Gateway

Settings in the OneStream Local Gateway Configuration.

4. For Database Connection gateways, to allow connections to local databases:

1. Define a Local Gateway connection including Data Sources through the

OneStream Local Gateway Configuration.

2. Test any configured Data Sources to confirm they are communicating

properly.

NOTE: Testing direct connections may involve building test

business rules to perform proper validation.

3. Define a custom database connection in the OneStream System

Configuration Setup.

Smart Integration Connector Guide 26

Setup and Installation

When installation is complete, you can access remote data sources using business rules,

member formulas, or dashboard data adapters in OneStream through the Smart

Integration Connector.

Gateway Terms

The Smart Integration fields define the gateway. You can find more information about

this below.

Term Definition

Relay Name Refers to the internal namespace of the relay

service that is responsible for managing the

data flow for all defined Gateways. For

example, arn-

mysite.servicebus.windows.net.

IPv4 Whitelist Contains the list of IPs or CIDR addresses

that are allowed to transfer data through

Smart Integration Connector.

Smart Integration Connector Guide 27

Setup and Installation

Term Definition

Name The name of the gateway. Gateway names

are completely arbitrary and typically refer to

the region (North East) or data source such

as (SAP).

The gateway name cannot be changed once

created, and they must be unique across all

environments—both development and

production. You can delete an existing

gateway and recreate it with a new name.

Description Text describing the role and purpose for the

gateway and the data sources to which it is

connecting.

Gateway Server Name Use for display and organizational purposes

only. This is the name of the gateway server

associated with the gateway. You can select

an existing gateway server or enter a new

one.

Smart Integration Connector Guide 28

Setup and Installation

Term Definition

Web API Key

(Database Connections only)

This is an editable field. You can change your

key as needed. If changed, it must also be

changed in the Smart Integration Connector

Local Gateway Server. It is designed to offer

an additional layer of protection within your

network when invoking APIs embedded in the

Smart Integration Connector Local Gateway

Server. The purpose of the Web API Key is to

give you full control on who can access the

data sources in your network.

Gateway Key This is the cloud key used to authenticate the

Smart Integration Connector gateway to the

customer OneStream environment. This key

can be rotated in the OneStream application

by Smart Integration Connector Gateway

administrators and must be the same in both

the remote Gateway service and in

OneStream.

Smart Integration Connector Guide 29

Setup and Installation

Term Definition

Status Value will be Online if the local gateway is

running and returning heartbeat messages

back to OneStream. If the Smart Integration

Connector Local Gateway Server is

unavailable, stopped, or network connectivity

is interrupted, it will display Offline.

Status Indicators Status indicators in the list of gateways

provide a visual indication of theGateway
status.

l Green: The Gateway isOnline.

l Red: The Gateway isOffline.

l Yellow: (Database Connections only)
The Gateway isOnline and an update
to the Local Gateway Server is

available.

NOTE: For Direct
Connections, the yellow status

is not displayed as these

connections do not report a

version number back to

OneStream.

Smart Integration Connector Guide 30

Setup and Installation

Term Definition

Instance Count Displays the number of active gateways. Up

to five active gateways per environment are

supported. This can be increased by

contacting Support.

Version

(Database Connections Only)

Displays the Smart Integration Connector

Local Gateway Server version. This version

may be different from the deployed version of

OneStream and allows administrators to

observe and monitor versions of Smart

Integration Connector Gateway software

deployed.

Active Local Gateway Server

Computer Name

(Database Connections Only)

Displays the computer name of the first Local

Gateway Server that connected to the Relay.

Smart Integration Connector Guide 31

Setup and Installation

Term Definition

Bound Port at Gateway Remote port bound to Gateway endpoint.

Database Connection Gateways default to

20433 and should not be changed without

consulting support.

Direct Connection Gateways allow any port

running on a remote host to be used. This

port represents the well-known TCP service

to expose from an on-premises host such as

sFTP, which would equate to port 22.

Remote Gateway Host

(Direct Connections Only)

Remote port host to Gateway Server. Used if

surfacing an endpoint such as an SFTP

Server. This could be the hostname or IP

address on the network that the Gateway

Server resides in. For example: 172.168.4.7

or sftp.mycompany.com

Smart Integration Connector Guide 32

Setup and Installation

Term Definition

Bound Port in OneStream

(Direct Connections Only)

This is a customer defined port that can be

referenced in data management or business

rules to directly access services such as

sFTP andWebAPI. This must be a globally

unique port in a OneStream deployment

environment per direct connection and should

be a TCP port number > 1024 and <65535.

When creating the gateway, use -1 and
OneStream will automatically assign an open

port.

Gateway failures reporting interval

(min)

Minutes to wait between reporting gateway

failures into the OneStream Error Log. The

default is five minutes and the max is 1440

minutes. If a gateway is unreachable, an item

is put in the error log using this interval value

in minutes and the minutes can be adjusted.

Local Gateway Server Installation

Smart Integration Connector is available in OneStream from the System >

Administration tab.

1. Download the Smart Integration Connector installer (OneStream_Connector_

#.#.#.zip) file from the Platform section of the Solution Exchange.

Smart Integration Connector Guide 33

Setup and Installation

https://solutionexchange.onestream.com/dashboard/home/browse

2. Copy the Smart Integration Connector Local Gateway Server installer to a

Windows Server within your environment.

3. Run the installer as an administrator. Accept all the default prompts. When

completed, the Local Gateway Server will be installed on your Windows Server.

IMPORTANT: If you are upgrading, you must follow steps 4-7.

4. Run the OneStream Local Gateway Configuration Utility.

5. The XFGatewayConfiguration.xml file will open by default.

IMPORTANT: Do not change the name of the

XFGatewayConfiguration.xml file. The OneStream Smart Integration

Connector Gateway Service only references this

XFGatewayConfiguration.xml file upon start-up. The Save As

functionality is used to create a backup of the file. It is best practice not

to rename, move, or change the location of the

XFGatewayConfiguration.xml file. If the configuration file has to be

opened from another location, then it will need to be opened from this

other location again after the upgrade.

6. Save the configuration file.

Smart Integration Connector Guide 34

Setup and Installation

7. Follow the dialog prompts and restart the service.

Create a Database Connection Gateway

Database Connection Gateways are used to connect OneStream to the Smart

Integration Connector Local Gateway Server over the Azure Relay. At least one Database

Connection Gateway is required for Smart Integration Connector to function properly.

After the gateway is created, you will need to copy the configuration to the Smart

Integration Connector Local Gateway Server using the OneStream Local Gateway

Configuration.

NOTE: For descriptions of the fields in this procedure, see Gateway Terms.

To create a Database Connection Gateway:

1. Go to System > Administration > Smart Integration Connector.

2. Click Create New Gateway.

3. Enter the Name and Description.

NOTE: The Gateway name cannot be changed once created and must

be deleted and re-created.

4. Select the Gateway Server from the drop-down, or enter a new Gateway Server

name in the same field. If this is the first Gateway being created, enter the name of

the Gateway Server.

NOTE: It is common practice to use the hostname or IP of your Smart

Integration Connector Local Gateway Server as the "Gateway Server"

Smart Integration Connector Guide 35

Setup and Installation

name. The Gateway Server name is only used to organize servers

when multiple Smart Integration Connector servers are set up.

5. From Connection Type, select Database Connection.

NOTE: Each Gateway Server will only have one Database Connection

and as such we recommend naming it "Database_Gateway_" followed

by the name used for "Gateway Server." This will differentiate the

Database Connection Gateways in future steps.

6. The Web API Key is used as an additional layer of security when communicating

with the Smart Integration Connector Local Gateway Server internal APIs.

NOTE: WebAPI keys are not required, but are best practice to enhance

security and can be modified or added at any time. The Local Gateway

Service introduces a WebAPI exposed only to OneStream and bound

Smart Integration Connector Guide 36

Setup and Installation

only to localhost on the server it is deployed to. This WebAPI is

inaccessible on the remote network. If the Local Gateway Service is

bound to other network interfaces, it is suggested to use the WebAPI

as a mechanism to enhance security on the remote network

preventing unauthorized use of OneStream WebAPIs.

7. Copy the configuration to the Smart Integration Connector Local Gateway Server

using the OneStream Local Gateway Configuration. For details, see Export and

Import the Gateway Configuration.

Create a Direct Connection Gateway (Optional)

A Direct Connection Gateway is a point-to-point channel to a specific remote network

resource such as an sFTP server or Web API (including iPaaS services).

NOTE: At least one database connection is required to use a Direct

Connection Gateway. The Database Connection Gateway because the

database connection is used to monitor the availability of the remote Smart

Integration Connector Gateway server.

The existence of a database connection does not necessarily mean it must

be used or configured to a data source if only Direct Connections are

desired.

NOTE: For descriptions of the fields in this procedure, see Gateway Terms.

To create a direct connection:

Smart Integration Connector Guide 37

Setup and Installation

1. (Required) A Database Connection Gateway must be created before the Direct

Connection Gateway is created. The Database Connection Gateway is used to

monitor the availability of the remote Smart Integration Connector Gateway server.

For details, refer to Create a Database Connection Gateway.

2. Go to System > Administration > Smart Integration Connector.

3. Click Create New Gateway.

4. Enter the Name and Description.

NOTE: The Gateway name cannot be changed once created and must

be deleted and re-created.

5. Select the Gateway Server from the drop-down, or enter a new Gateway Server

name in the same field. If this is the first Gateway being created, enter the name of

the Gateway Server.

NOTE: It is common practice to use the hostname or IP of your Smart

Integration Connector Local Gateway Server as the "Gateway Server"

name. The Gateway Server name is only used to organize servers

when multiple Smart Integration Connector servers are set up.

6. From Connection Type, select Direct Connection (e.g, SFTP, WebAPI).

7. Enter the Bound Port at Gateway. This port represents the well-known TCP service

to expose from an on-premises host such as SFTP, which would equate to port 22.

NOTE: The remote service port is required to configure the connection

and may require consultation with network or IT resources to obtain it.

Smart Integration Connector Guide 38

Setup and Installation

It is also required that any firewalls between the Local Gateway Server

and the remote host allow traffic to the destination port specified.

8. Enter the Remote Gateway Host (for example, localhost). This represents the

remote host name or IP address accessible by the OneStream Smart Integration

Connector Local Gateway Server. If the host or IP address is accessible or

resolvable from the OneStream Smart Integration Connector Gateway service or

using remote resources accessible through on-premises WAN, it can be exposed

for use.

9. Enter a Bound Port in OneStream. It is a best practice to use -1 for this value as the

OneStream application servers will locate an unused and available port to map to

this connection. This port number must be globally unique across all application

servers in a OneStream deployment, and care should be taken if a port is specified.

This is the port that is used to access the remote host through business rules and

data management jobs from OneStream application servers to allow network

traffic to traverse to the remote host and port.

10. Using this direct connection in OneStream is done by accessing localhost: [Bound

Port In OneStream] which will tunnel traffic back to the configured remote Gateway

Host to the configured bound port at gateway.

Smart Integration Connector Guide 39

Setup and Installation

l Example: Remote SFTP server at 172.168.3.4 listening on port 22.

l Bound Port in OneStream is configured as port 45000. Note that when -1 is

used, the selected port number is available/displayed after saving and also

surfaced in the OneStream Error Log.

l In OneStream Business Rules, you can access the remote host by connecting

to localhost:45000.

l In a OneStream Business Rule, this port can also be obtained in code allowing

this port number to be changed without updating Business Rules:

Dim gatewayDetails As GatewayDetails =
BRApi.Utilities.GetGatewayConnectionInfo(si, "northamerica_sftp")
Dim remotePort = gatewayDetails.OneStreamPortNumber

Smart Integration Connector Guide 40

Setup and Installation

Export and Import the Gateway Configuration

You must copy the gateway configuration settings and paste them into your Smart

Integration Connector Gateway to establish the connection.

1. Go to System > Administration > Smart Integration Connector.

2. Select the Gateway to export.

3. Click Export Gateway Configuration. The Gateway Configuration Details are

copied to the clipboard.

4. On your Windows Server, open the OneStream Local Gateway Configuration.

This runs as administrator by default.

Smart Integration Connector Guide 41

Setup and Installation

5. The existing XFGatewayConfiguration.xml opens by default.

6. Click next to Local Gateway Settings.

7. Click next to Local Gateways.

8. Import the previously copied Gateway Configuration.

9. Click Apply.

10. Click Test Connection to test the connection.

Smart Integration Connector Guide 42

Setup and Installation

11. Click OK twice.

12. Save the configuration.

13. Click Yes to apply the changes and restart the Local Gateway Server.

New Gateway Key Generation

Smart Integration Connector administrators can rotate the Gateway Key maintained by

the underlying cloud service; however, it must be the same for both the Smart Integration

Connector local gateway and the gateway configuration in the OneStream Windows

Application to function properly.

1. Select an existing gateway.

2. Click Regenerate Gateway Key for Selected Gateway.

3. You must re-export your Gateway Configuration and apply the new settings

throughout the OneStream Local Gateway Configuration. See Export and Import

the Gateway Configuration.

4. Click OK.

Smart Integration Connector Guide 43

Setup and Installation

Connect a Local Gateway to a Data Source

A data source contains the name, connection string, and database provider for the

database of your choice. You can set up a PostgreSQL, SQL, Oracle, OleDb, MySQL,

ODP.net, or Microsoft ODBC connection. The data source is configured using the Local

Gateway Configuration Utility. The utility was installed as part of the Smart Integration

Connector Local Gateway installation.

1. Start the OneStream Local Gateway Configuration.

2. The existing XFGatewayConfiguration.xml opens by default.

3. Click to configure Local Gateway Connections details to set up the Data

Sources to local databases, APIs, or other on-premises resources.

4. Click next to Data Sources.

5. Click Add Item to add a new data source.

Smart Integration Connector Guide 44

Setup and Installation

6. If you have a password for the connection string, enter it in the Connection String

Password field. The password is masked for security. Then, when you need to

enter your connection string password, use the substitution variable: |password|

Example:

Data Source=localhost;Initial Catalog=Sales_DB;Persist Security Info=True;User

ID=sa;Password=|password|;

7. Enter the Data Source Name, Connection String, and select a Database

Provider.

NOTE: The Connection String Password is substituted in place of

|password| in the connection string. For security purposes, we

recommend using the Connection String Password field and the

substitution variable to ensure the password is not shown on screen.

However, you can also embed the password directly within your

connection string. For example: Server =

localhost;Port=3306;uid=root;pwd=my_

password;database=gatewaymysql;.

You can add as many data sources as necessary. The Data Source Name must be

unique for each connection defined within a specific OneStream Smart Integration

Connector Local Gateway Server. Names can be re-used across deployed

Smart Integration Connector Guide 45

Setup and Installation

instances of the Windows Service across your network. See below for connection

string examples to a variety of relational data sources such as PostgreSQL, SQL,

and ODBC, and Oracle. Connection Strings are encrypted automatically. You can

edit the plain text string by clicking the ellipsis.

NOTE: Oracle databases require drivers and specific configuration

provided by Oracle.

8. Click OK to save your configuration.

IMPORTANT: The connection strings below include user IDs and the

password substitution variable. You can also use integrated security to

remove plain text user IDs and passwords from connection strings in

Smart Integration Connector. See Remove UserID and Passwords by

Integrated Security.

Microsoft SQL Server

Below is an example for setting up a SQL database using the SqlClient provider.

1. Click next to Data Sources.

2. Click Add Item to add the data source.

3. Data Source Name: Northeast_Sales

4. Connection String:

with UserID / Password:

Server=localhost;Initial Catalog=Sales_DB;User ID=sa;Password=|password|;Max

Pool Size=1000;Connect Timeout=60;

Smart Integration Connector Guide 46

Setup and Installation

5. Enter your Connection String Password.

NOTE: The Connection String Password is substituted in place of

|password| in the connection string. For security purposes, we

recommend using the Connection String Password field and the

substitution variable to ensure the password is not shown on screen.

However, you can also embed the password directly within your

connection string. For example: Server =

localhost;Port=3306;uid=root;pwd=my_

password;database=gatewaymysql;.

6. From Database Provider, select SqlClient Data Provider.

7. Click Test Connection to test the data source.

8. Click OK to save.

MySQL Data Provider

Below is an example for setting up a MySQL Data Provider.

1. Click next to Data Sources.

2. Click Add Item to add a new data source.

3. Data Source Name: Sales_UK

4. Connection String:

Server = localhost;Port=3306;uid=root;pwd=|password|;database=gatewaymysql;

5. Enter your Connection String Password.

Smart Integration Connector Guide 47

Setup and Installation

NOTE: The Connection String Password is substituted in place of

|password| in the connection string. For security purposes, we

recommend using the Connection String Password field and the

substitution variable to ensure the password is not shown on screen.

However, you can also embed the password directly within your

connection string. For example: Server =

localhost;Port=3306;uid=root;pwd=my_

password;database=gatewaymysql;.

6. From Database Provider, select MySQL Data Provider.

7. Click Test Connection to test the data source.

8. Click OK to save.

Oracle Database Examples

Connecting to Oracle requires the download and configuration of the Oracle Data

Access Components (ODAC) obtained directly from Oracle’s website. Follow the steps

below to get access to these drivers and files.

1. Go to the latest web page for Oracle .NET and Visual Studio ODAC Downloads for

Oracle Database.

2. After installation, the ODP.NET Provider will display as an available Database

Provider in the utility when adding a new data source.

3. The connection string for Oracle databases can be set up to either reference or

Smart Integration Connector Guide 48

Setup and Installation

https://www.oracle.com/database/technologies/net-downloads.html
https://www.oracle.com/database/technologies/net-downloads.html

require a locally defined tnsnames.ora file for the requested data sources.

Example Connection Strings:

l Oracle Data Provider for .NET: Data Source=oracletest;User

Id=OneStream1;Password=|password|;

l Oracle Data Provider without TNSNames.ora: Data Source=(DESCRIPTION=

(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=MyHost)(PORT=MyPort)))

(CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=MyOracleSID))); User

Id=myUsername;Password=|password|;

OracleClient Database Provider

Below is an example for setting up a OracleClient database provider.

1. Click next to Data Sources.

2. Click Add Item to add the data source.

3. Data Source Name: Sales_EMEA

Smart Integration Connector Guide 49

Setup and Installation

4. Connection String: Data Source=oracletest;User

Id=OneStream1;Password=|password|

5. Enter your Connection String Password.

NOTE: The Connection String Password is substituted in place of

|password| in the connection string. For security purposes, we

recommend using the Connection String Password field and the

substitution variable to ensure the password is not shown on screen.

However, you can also embed the password directly within your

connection string. For example: Server =

localhost;Port=3306;uid=root;pwd=my_

password;database=gatewaymysql;.

6. From Database Provider, select OracleClient Data Provider.

7. Click Test Connection to test the data source.

8. Click OK to save.

Oracle Data Provider for .NET

Below is an example for setting up a Oracle Data Provider for .NET.

1. Click next to Data Sources.

2. Data Source Name: Sales_SouthAmerica

3. Connection String:

Data Source=oracletest;User Id=OneStream1;Password=|password|

4. Enter your Connection String Password.

Smart Integration Connector Guide 50

Setup and Installation

NOTE: The Connection String Password is substituted in place of

|password| in the connection string. For security purposes, we

recommend using the Connection String Password field and the

substitution variable to ensure the password is not shown on screen.

However, you can also embed the password directly within your

connection string. For example: Server =

localhost;Port=3306;uid=root;pwd=my_

password;database=gatewaymysql;.

5. From Database Provider, select Oracle Data Provider for .NET.

6. Click Add Item to add a new data source.

7. Click Test Connection to test the data source.

8. Click OK to save.

PostgreSQL (Npgsql Data Provider)

Below is an example for setting up a PostGres database.

1. Click next to Data Sources.

2. Click Add Item to add the data source.

3. Data Source Name: RevenueMgmtPostGres

4. Connection String: Server=localhost;Port=5432;Database=revmgt;User

Id=onestream;Password=|password|;

5. Enter your Connection String Password.

Smart Integration Connector Guide 51

Setup and Installation

NOTE: The Connection String Password is substituted in place of

|password| in the connection string. For security purposes, we

recommend using the Connection String Password field and the

substitution variable to ensure the password is not shown on screen.

However, you can also embed the password directly within your

connection string. For example: Server =

localhost;Port=3306;uid=root;pwd=my_

password;database=gatewaymysql;.

6. From Database Provider, select Npgsql Data Provider.

7. Click Test Connection to test the data source.

8. Click OK to save.

OleDb Data Provider

Below is an example for setting up an Oracle database. This does not require additional

download and configurations.

1. Click next to Data Sources.

2. Click Add Item to add the data source.

3. Data Source Name: Sales_Asia

4.

Connection String: Provider=OraOLEDB.Oracle;Data

Source=localhost:1521/XE;Initial Catalog=myDataBase;User

Id=myUsername;Password=|password|;

(missing or bad snippet)

5. Enter your Connection String Password.

Smart Integration Connector Guide 52

Setup and Installation

NOTE: The Connection String Password is substituted in place of

|password| in the connection string. For security purposes, we

recommend using the Connection String Password field and the

substitution variable to ensure the password is not shown on screen.

However, you can also embed the password directly within your

connection string. For example: Server =

localhost;Port=3306;uid=root;pwd=my_

password;database=gatewaymysql;.

6. From Database Provider, select OleDb Data Provider.

7. Click Test Connection to test the data source.

8. Click OK to save.

ODBC Data Provider

ODBC data sources can be defined (using a system DSN) to remove credentials from the

configuration file. For ODBC connections, most ODBC drivers will allow you to set up a

system DSN entry on the server, then the connection string in the gateway will be to only

point to the DSN entry. See Administer ODBC data sources for more information. Below is

an example for setting up an ODBC data source for Oracle.

Smart Integration Connector Guide 53

Setup and Installation

https://support.microsoft.com/en-us/office/administer-odbc-data-sources-b19f856b-5b9b-48c9-8b93-07484bfab5a7

1. Click next to Data Sources.

2. Click Add Item to add the data source.

3. Data Source Name: Sales_Europe

4. Connection String: Driver={Microsoft ODBC for Oracle};Server=(DESCRIPTION=

(ADDRESS=(PROTOCOL=TCP)(HOST=199.199.199.199)(PORT=1523))(CONNECT_

DATA=(SID=dbName)));Uid=myUsername;Pwd=|password|;

5. Enter your Connection String Password.

NOTE: The Connection String Password is substituted in place of

|password| in the connection string. For security purposes, we

recommend using the Connection String Password field and the

substitution variable to ensure the password is not shown on screen.

However, you can also embed the password directly within your

connection string. For example: Server =

localhost;Port=3306;uid=root;pwd=my_

password;database=gatewaymysql;.

6. From Database Provider , select Odbc Data Provider.

7. Click Test Connection to test the data source.

8. Click OK to create the new source.

9. Click Save.

Smart Integration Connector Guide 54

Setup and Installation

(Optional) Remove UserID and Passwords by

Integrated Security

You can remove UserIDs and Passwords from connection strings in Smart Integration

Connector if your organization has concerns over credential storage in the Smart

Integration Connector Gateway configuration file. This requires running the Windows

Service under a Service Account identity and using integrated security to connect to

remote data sources, which eliminates local storage of any plain text credentials.

Additionally, ODBC data sources can be defined (using a system DSN) to remove

credentials from the configuration file.

Update the Local Gateway Connection String

1. Open your OneStream Local Gateway Configuration.

2. Open a Local Gateway Connection.

3. Navigate to the Connection String and use an Integrated or Trusted Security string.

For example: Data Source=localhost,Initial Catalog=OneStream_GolfStreamDemo_

2022;Trusted_Connection=True;

Smart Integration Connector Guide 55

Setup and Installation

NOTE: Trusted Connections use the UserID and password you use to

log into the Windows Server.

NOTE: The example above is for SQL server. Trusted connections vary

by Data Provider type.

4. Click OK.

5. Save your Data Source.

Update Permissions on the Service

Next, you need to update the service to run as the user. If the service is not updated, the

connection does not update and errors will occur.

1. Open Windows Services.

2. Navigate to OneStream Smart Integration Connector Gateway. The service

should be running.

Smart Integration Connector Guide 56

Setup and Installation

3. Right-click and open Properties.

4. Click the Log On tab. Typically, this will default to the Local System account.

IMPORTANT: Before moving to the next step, ensure that you have the

appropriate permissions and approvals from your IT Administrators to

complete the Log On change. The service account used will require

local Administrative rights to access resources on the Windows server,

such as the machine certificate store and private keys used for

encryption. This account will also require the appropriate permissions

to access the database such as Microsoft SQL Server.

5. Change log on from Local System account to This account and enter your

domain or login that has access to the data source. Depending on how your SSO is

configured, your account could require your domain name, UserID, and password.

Contact your IT Administrator if you have questions about your account domain.

Smart Integration Connector Guide 57

Setup and Installation

6. Click Apply.

7. Click OK.

8. Right-click and select Restart to restart and update the service.

Test the Updated Integrated Connection String

You should test your connection through a Data Adapter query to verify your access to

Smart Integration Connector. An alternate SQL Query to pulling the first 10-50 rows is

sufficient. See Data Adapters Example.

Smart Integration Connector Guide 58

Setup and Installation

Microsoft Entra Authentication for Azure SQL

The ability to use Microsoft Entra using service principal authentication to access Azure

SQL is supported.

1. Open your OneStream Local Gateway Configuration.

2. Open a Local Gateway Connection.

3. Enter a Data Source Name of MicrosoftEntra.

4. Navigate to the Connection String and enter a connection string. Example:

Server=demo.database.windows.net; Authentication=Active Directory Service

Principal; Encrypt=True; Database=testdb; User Id=AppId; Password=|password|;

5. Enter your Connection String Password.

NOTE: The Connection String Password is substituted in place of

|password| in the connection string. For security purposes, we

recommend using the Connection String Password field and the

substitution variable to ensure the password is not shown on screen.

However, you can also embed the password directly within your

connection string. For example: Server =

localhost;Port=3306;uid=root;pwd=my_

password;database=gatewaymysql;.

6. Select MS Data SQL Provider as your Database Provider.

Smart Integration Connector Guide 59

Setup and Installation

7. Click Test Connection to test the data source.

8. Click OK.

9. Click Save.

Restart OneStream Smart Integration

Connector Gateway

After communication has been verified, the following Windows Service needs to run to

maintain communication with the OneStream Cloud instance. By default, these services

are set to start after a Windows reboot. You can also manually start them using the

Windows Service control manager or the command line using the net start/net stop

commands. If you are having issues restarting the service, see Troubleshooting.

1. Open the OneStream Local Gateway Configuration.

2. Click Tools > Restart OneStream Smart Integration Connector Gateway.

Smart Integration Connector Guide 60

Setup and Installation

Load Balanced Local Gateway Servers

Install the Smart Integration Connector Local Gateway Server on separate Windows

Servers to create a load-balanced environment. In a load balanced environment,

consider the following:

l Incoming connections are balanced between the available Local Gateway Servers.

l Load balanced Local Gateway Servers do not support queries over 1 million rows or

the use of Smart Integration Connector Functions that query for long running jobs.

The support for these use cases will be included in a future release of Smart

Integration Connector.

l The first Local Gateway Server to establish a connection to the Relay is displayed in

the Active Local Gateway Server Computer Name field in the Smart Integration

Connector Admin setup.

l The number of active gateways is displayed in the Instance Count field.

Smart Integration Connector Guide 61

Setup and Installation

Create a Load Balanced Local Gateway Server

To create a redundant gateway server, you must set up Smart Integration Connector in

this order:

1. On the first Windows Server, complete installation on the initial Local Gateway

Server and verify all data connections transfer data.

2. On the second Windows Server in your environment, install the OneStream Smart

Integration Connector Local Gateway Server

(OneStreamSmartIntegrationConnectorGateway.msi).

NOTE: If you are using custom DLLs, SAP, or referenced DLLs, you must

copy the existing Referenced Assemblies Folder. Locations must be in sync

and in the same location on the primary server. See Smart Integration

Connector Settings.

1. On the second server, perform the following steps:

1. Open the OneStream Local Gateway Configuration.

2. Go to Tools > Import Configuration from Primary Gateway Server.

1. Choose the location of the file and select Open.

CAUTION: You will overwrite the existing local gateway

configuration. If you use Connection String Passwords, you

will need to reenter a connection string password.

Smart Integration Connector Guide 62

Setup and Installation

CAUTION: If you installed a custom database driver, you

must install the customer database driver on the backup

gateway server.

2. Click Local Gateway Connections > Data Sources.

3. Select a Data Source and the Connection String Passwords.

4. Select OK to provide a new Connection string.

5. Delete the encrypted text and replace it with a valid connection string

from the primary server.

6. Select OK to encrypt the connection string and close the dialog box.

7. Repeat steps above for all the remaining data sources.

8. Click OK to close the Data Sources.

9. Click OK to close the Local Gateway Connections.

10. Click Save to save the Local Gateway Configuration.

11. Click Yes to restart the service.

12. Test the Smart Integration Connector Local Gateway Server in

OneStream.

2. Verify the Instance Count is 2 when both the initial and second servers are running

in the OneStream Windows application. The first Local Gateway Server to establish

a connection to the Relay is displayed in the Active Local Gateway Server

Computer Name field

Smart Integration Connector Guide 63

Setup and Installation

Define Custom Database Connections in

OneStream System Configuration Setup

Now that the gateway is set up and communicating with the Smart Integration

Connector Gateway, the final step is to set up the location of the remote data source in

OneStream. To continue adding the Custom Database Connection, you must assign a

user to the ManageSystemConfiguration role.

1. Go to System > Administration > System Configuration.

2. Select Application Server Configuration > Database Server Connections.

Smart Integration Connector Guide 64

Setup and Installation

3. Select Create Item to create a new Custom database server connection.

NOTE: If the only fields displayed are Name and External Database

properties, verify that the current user is assigned to the

ManageSystemConfiguration role.

4. Enter the Name of the Database Server Connection.

5. For Database Provider Type, select Gateway.

Smart Integration Connector Guide 65

Setup and Installation

6. The Gateway Name drop-down menu will be populated with a list of configured

Gateways. Select the Gateway.

7. After the Gateway is selected, the Data Source Name drop-down menu populates

with a list of the Local Gateway Server Database Connections.

8. Select a Database Connection from the drop-down menu.

NOTE: If the remote data source is not displayed or the Gateway is

offline, you can select Custom to allow the data source to be manually

specified. It is advised to wait up to five minutes for the Gateway to

populate first.

9. Click Save to complete the configuration.

10. Verify the custom database connection is under Custom.

Smart Integration Connector Guide 66

Setup and Installation

Smart Integration Additional Settings

Local Application Data Settings

Additional application configurations can be applied within the Local Application Data

Settings.

Once you open a configuration file within the utility, open Local Application Data Settings.

You can:

l Reference a location to additional DLLs that will be used in remote business rules.

l Adjust the Maximum Records to Return. These are optional and are only defined if

needed or if further tuning is necessary by a consultant or as instructed by Support.

l Store Configuration Parameters and associated values.

Referenced Assemblies Folder

The Referenced Assemblies Folder specifies the location of customer-supplied DLLs

that can be referenced when remote Smart Integration Functions are compiled and

executed. You will need to add the DLL name to the Smart Integration Functions

Smart Integration Connector Guide 67

Smart Integration Additional Settings

Referenced Assemblies property. The default value is C:\Program Files\OneStream

Software\OneStream Gateway\Referenced Assemblies.

NOTE: If you are integrating SAP with ERPConnect, add ERPConnect and

the required DLLs to the Referenced Assemblies folder and

C:\Windows\System32 folder per instructions. Refer to Support for SAP

Integration.

Record Count Adjustments

Maximum Records to Return when Paging

Defaults to 1,000,000 and defines the number of rows to return per page/block to

OneStream APIs. This value is used only when greater than the "Row Count to Begin

Paging Operations" rows are returned from a query. Example: If the query returns 3 million

rows and Row Count to Begin Paging is set to 1 million, there would be 3 blocks of 1 million

rows returned to OneStream.

NOTE: Maximum Records to Return when Paging, Maximum Records to

Return, and Row Count to Begin Paging Operations are optional and should

only be applied by a OneStream consultant or OneStream Support.

Maximum Records to Return

Defaults to 5,000,000 and is the maximum number of rows that can be returned from

any one query.

The maximum recommended number of records to return is 5 million and is the default.

Additional RAM/CPU resources would be required on the Smart Integration Connector

Gateway Server and on the remote database server to surface large quantities of data. If

Smart Integration Connector Guide 68

Smart Integration Additional Settings

this limit is exceeded, you will receive a "Smart Integration Connector Remote Query"

error.

NOTE: Maximum Records and Row Counts Settings: When large data

volumes are returned (over 1,000,000 rows), to maintain performance and

reliability, Smart Integration Connector automatically transfers the data in

pages.

NOTE: Smart Integration Connector has a threshold limit of 5 million rows

and 5GB.

NOTE: It is a best practice that you review any queries that return more than

1 million rows with your Database Administrator, because additional tuning

may be required. Tuning these queries will improve performance, reduce

resource usage, and make them more efficient.

Smart Integration Connector Guide 69

Smart Integration Additional Settings

Row Count to Begin Paging Operations

Defaults to 1,000,000 and is the number of rows returned before the dataset is returned

through pages/blocks.

Local Configuration Parameters

This is where you can set key value pairs, such as Web API keys, usernames, and

passwords, that can be referenced from business rules. These key value pairs are

defined as Configuration Parameter Name and Configuration Parameter Value.

For example, the Configuration Parameter Name is SFTP_PASSWORD. Sensitive

information, such as the password, is stored in the Configuration Parameter Value on

the Local Gateway Server and does not need to be stored in the OneStream Windows

Application.

NOTE: Configuration Parameter Values are masked and encrypted by

default. When setting up the parameter, you will have the option of always

showing the parameter in plain text.

Then, in a business rule, you can reference the Configuration Parameter Name and do

not need to know the password or other sensitive information that is stored in the

Configuration Parameter Value. For example, in the following business rule the

sftpPassword Configuration Parameter Name is referenced. The

GetSmartIntegrationConfigValue API can be used in a Smart Integration Function to

reference the Configuration Parameter Name, which may be needed in a business rule to

access a local data source.

Smart Integration Connector Guide 70

Smart Integration Additional Settings

Dim passwordString As String = APILibrary.GetSmartIntegrationConfigValue("SFTP_PASSWORD")

Log Settings

The service uses Serilog for application-level logging and exposes options for controlling

naming convention, growth limits, and retention details. For example you can change the

verbosity of log messages by changing the minimum-level setting from Verbose to

Informational. If a catastrophic error happens, you can check the Windows event logs to

review the errors. You can edit the Log Settings from the OneStream Local Gateway

Configuration Utility.

Click to access Log Settings.

Smart Integration Connector Guide 71

Smart Integration Additional Settings

l Log Level descriptions:

l Verbose: The noisiest level, rarely (if ever) enabled for a production

application.

l Debug: Used for internal system events that are not necessarily observable

from the outside, but useful when determining how something happened.

l Information: Used to describe things happening in the system that

correspond to its responsibilities and functions. Generally, these are the

observable actions the system can perform. This is recommended for

production environments and is the default setting upon installation.

l Warning: Service is degraded, endangered, or may be behaving outside of its

expected parameters.

l Error: Logging of situations where functionality is unavailable or a recoverable

error condition occurred.

l Fatal: Only the most critical level items would be logged, requiring immediate

attention.

l File Size Limit in Bytes: The maximum size for the log file, in bytes, before creating

a new file for the day. The default is 20 MB.

l Roll On File Size Limit: When a log file reaches the specified number of bytes, a

new log file is generated.

l Retained File Count Limit: Number of log files to retain. If logs do not exceed the

limit in bytes (one file/day), this would allow for the configured value (with 40 days

being the default) of log retention. If the Smart Integration Service is used heavily

and log files are set to higher levels of verbosity, this could result in fewer days of

log retention. Ensure that the growth rate and retention periods align with your

Smart Integration Connector Guide 72

Smart Integration Additional Settings

organizational requirements.

The default location for log files is:

%programdata%\OneStreamSoftware\OneStreamGatewayService\Logs.

NOTE: The log file's output has been updated to reflect the enhanced

performance and reliability of multithreaded or parallel processing for larger

payloads since the Platform Version v8.4 update.

Smart Integration Connector Guide 73

Smart Integration Additional Settings

Advanced Networking and Whitelisting

Smart Integration Connector requires outbound traffic over port 443 to function. If you

restrict outbound traffic over 443 then whitelisting outbound traffic to Azure Relay

Service will be required. Smart Integration Connector does not require any inbound

access rules to function.

Restrict Traffic to the Azure Relay

You can block or restrict traffic to your Azure relay to only allow certain IP ranges to

connect.

1. From the OneStream Windows Application client go to System > Administration >

Smart Integration Connector > Relay.

2. Select IPv4 Whitelist.

3. Enter IPv4 compatible IP (XXX.XXX.XXX.XXX) or CIDR addresses

(XXX.XXX.XXX.XXX/XX) separated by a semi colon in the IPv4 Whitelist dialog box.

NOTE: IPv6 addresses are not currently supported.

NOTE: Do not include any extra spaces for characters.

Smart Integration Connector Guide 74

Advanced Networking and Whitelisting

4. Restart your Local Gateway Service.

Whitelist Outbound Traffic to Azure Relay

Service from your Firewall

Allow outbound traffic using a wildcard domain to the Azure Relay Service (best practice).

If the firewall does not allow wildcards, use the fully qualified domain names for your

specific Azure Relay namespaces.

NOTE: For additional information, see Azure Relay WCF and Hybrid

Connections DNS Support.

Allow Traffic using Wildcard Domain (Best Practice)

To allow traffic using a wildcard domain (Microsoft Recommended best practice), add

*.servicebus.windows.net to the firewall rules permitting port 443 outbound.

Allow Traffic using IP addresses (Not Recommended)

To allow traffic using fully qualified domain names to the firewall rules:

Smart Integration Connector Guide 75

Advanced Networking and Whitelisting

https://techcommunity.microsoft.com/t5/messaging-on-azure-blog/azure-relay-wcf-and-hybrid-connections-dns-support/ba-p/370775
https://techcommunity.microsoft.com/t5/messaging-on-azure-blog/azure-relay-wcf-and-hybrid-connections-dns-support/ba-p/370775

1. Look up the IP addresses used by the Azure Relay namespace. The IP addresses

can be returned by using this script.

2. Add the IP addresses to the firewall rules permitting port 443 outbound.

3. Frequently monitor the IP addresses for changes. Update the IP addresses in the

firewall rules when there are IP address changes. The IP addresses can be returned

by using this script.

NOTE: Up to 20% of the IP address can change in the span of a month.

To ensure that Smart Integration Connector continues to operate, you

will need to frequently monitor if these IPs change and adjust your

firewall accordingly.

Smart Integration Connector Guide 76

Advanced Networking and Whitelisting

https://github.com/Azure/azure-relay-dotnet/blob/dev/tools/GetNamespaceInfo.ps1
https://github.com/Azure/azure-relay-dotnet/blob/dev/tools/GetNamespaceInfo.ps1

Use Smart Integration Connector

You can use Smart Integration Connector to access data from your Local Gateway

Connection Data Sources or through Direct Connections.

Examples

Data Adapters Example

1. Go to Application > Presentation > Workspaces > [choose Workspace] >

[choose Maintenance Unit] > Data Adapters.

2. Create or select an existing data adapter.

3. Verify that the Database Location is External and the External Database

Connection is the custom connection that you defined earlier.

4. Enter a valid SQL Query.

5. Test the data adapter and view the results.

Smart Integration Connector Guide 77

Use Smart Integration Connector

SQL Table Editor Example

The following use case describes how to send a query after establishing a connection.

1. Go to Application > Presentation > Workspaces > [choose Workspace] > [

Maintenance Unit] > [choose Maintenance Unit] > Components > SQL Table

Editor.

2. Create Dashboard Component or open a SQL Table Editor.

3. Choose SQL Table Editor and select OK.

4. Verify the following:

Smart Integration Connector Guide 78

Use Smart Integration Connector

l Database Location is External,

l External Database Connection is the custom connection that you defined

earlier,

l Table Name is defined as the table you want to return data from.

5. Open the associated dashboard and run the query. The OneStream Smart

Integration Connector will connect to the external database. If it connects correctly,

the query will populate.

NOTE: If you plan on modifying data with SQL Table Editor using Smart

Integration Connector, then you will need to write back data with a custom

business rule using the Execute Dashboard Extender Business Rule

feature under the Save Data Server Task action.

Grid View Example

1. Go to Application > Presentation > Workspaces > [choose Workspace] > [

Maintenance Unit > [choose Maintenance Unit] > Components > Grid View.

2. Create Dashboard Component or open a grid view.

Smart Integration Connector Guide 79

Use Smart Integration Connector

3. Choose Grid View and select OK.

4. Configure the grid to use the data adapter.

5. Run the associated dashboard to see the data.

Perform a Drill Back

The following snippet describes how to load data from a local gateway connection data

source and how to perform a drill back. The example below has been updated from the

Standard SQL Connectors business rule. If you do not have the Snippet Editor with the

OneStream Application, you can find the Snippet Editor on the MarketPlace.

Smart Integration Connector Guide 80

Use Smart Integration Connector

1. Download and install the Snippet Editor from the MarketPlace.

2. Navigate to Application > Tools > Business Rules.

3. Expand Connector and select a Business Rule.

4. Navigate to Snippets > SQL Connector > Standard SQL Connectors.

5. Copy the Sample Business Rule.

Smart Integration Connector Guide 81

Use Smart Integration Connector

6. Enter the connection name. In this example, “Northeast Sales” is the Gateway

Connection Name as defined in the application configuration.

' Create a Connection string to the External Database (prior to using the gateway)
Private Function GetConnectionString(ByVal si As Sessioninfo, ByVal globals As
BRGlobals, ByVal api As Transformer) As String
Try
' Named External Connection
' ---
Return "Revenue Mgmt System"
Catch ex As Exception
Throw ErrorHandler.LogWrite(si, New XFException(si, ex))
End Try

End Function
' Create a Connection string to the External Database (using the Gateway)
Private Function GetConnectionString_Gateway(ByVal si As Sessioninfo, ByVal globais
As BRGlobals, ByVal api As Transformer) As String
Try
' Named External Connection - Gateway
' ---
Return "Northeast Sales"
Catch ex As Exception
Throw ErrorHandler.LogWrite(si, New XFException(si, ex))
End Try

End Function

7. Enter the drill back information to your database.

If args.DrillCode.Equals
(StageConstants.TransformationGeneral.DrillCodeDefaultValue,
StringComparison.InvariantCulturelgnoreCase) Then
' Source GL Drill Down

 drillTypes.Add(New DrillBackTypeInfo(ConnectorDrillBackDisplayTypes.FileShareFile,
New NameAndDesc("InvoiceDocument","Invoice Document")))
 drillTypes.Add(New DrillBackTypeInfo(ConnectorDrillBackDisplayTypes.DataGrid, New
NameAndDesc("MaterialTypeDetail","Material Type Detail")))
 drillTypes.Add(New DrillBackTypeInfo(ConnectorDrillBackDisplayTypes.DataGrid, New
NameAndDesc("MaterialTypeDetail_Gateway","Material Type Detail (Smart
Integration)")))

8. Edit the level of drill back information returned.

Smart Integration Connector Guide 82

Use Smart Integration Connector

Example: This example shows previously existing code

that leverages a VPN based SQL connection and the

Gateway based method shown in the second "Else If"

block.

Else If args.DrillBackType.NameAndDescription.Name.Equals("MaterialTypeDetail",
StringComparison.InvariantCultureIgnoreCase) Then
' Level 1: Return Drill Back Detail
Dim dri1lBackSQL As String - GetDrillBackSQL_Ll(si, globais, api, args)
Dim drillBackInfo As New DrillBackResultInfo

 drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.OataGrid
 drillBackInfo.DataTable = api.Parser.GetXFDataTableForSQLQuery(si,
DbProviderType.SqlServer, connectionstring. True, drillBackSQL, False, args.PageSize,
args.PageNumber)
Return drillBacklnfo

Else If args.DrillBackType.NameAndDescription.Name.Equals("MaterialTypeDetail_Gateway",
StringComparison.lnvariantCultureIgnoreCase) Then
' Level 1: Return Drill Back Detail
Dim drillBackSQL As String = GetDrillBackSQL_Ll(si, globais, api, args)
Dim drillBackInfo As New DrillBackResultInfo

 drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.OataGrid
 drillBackInfo.DataTable = api.Parser.GetXFDataTableForSQLQuery(si,
DbProviderType.Gateway, connectionstring_gateway. True, drillBackSQL, False,
args.PageSize, args.PageNumber)
Return drillBacklnfo

Perform a Write Back

You can perform a write back using Smart Integration Connector leveraging the defined

credentials to the local gateway dataSource at the Smart Integration Connector

Gateway. If the credentials have permission to insert, update, and/or delete records in a

remote dataSource, a OneStream business rule could be leveraged to write-back,

update, and/or delete data as needed to support a financial process.

Example: The following example shows how to insert rows

and columns to a Smart Integration Connector SQL remote

database. Other types of databases (ODBC and OLEDB) are

not compatible with this example.

Smart Integration Connector Guide 83

Use Smart Integration Connector

Imports System
Imports System.Collections.Generic
Imports System.Data
Imports System.Data.Common
Imports System.Globalization
Imports System.IO
Imports System.Linq
Imports System.Windows.Forms
Imports Microsoft.VisualBasic
Imports OneStream.Finance.Database
Imports OneStream.Finance.Engine
Imports OneStream.Shared.Common
Imports OneStream.Shared.Database
Imports OneStream.Shared.Engine
Imports OneStream.Shared.Wcf
Imports OneStream.Stage.Database
Imports OneStream.Stage.Engine
Namespace OneStream.BusinessRule.Extender.SIC_BulkCopyExample

Public Class MainClass
Public Function Main(ByVal si As SessionInfo, ByVal globals As BRGlobals, ByVal

api As Object, ByVal args As ExtenderArgs) As Object
Try

' SIC Gateway name
Dim sicGatewayName As String = "Northeast_HQ"

' SIC remote rule
Dim sicRemoteRule As String = "update_DB"

' SIC remote rule function
Dim sicRemoteRuleFunction As String = "RunOperation"
' Create and populate DataTable
Dim dt As New DataTable()

 dt.Columns.Add("Scenario", GetType(String))
 dt.Columns.Add("Time", GetType(String))
 dt.Columns.Add("Entity", GetType(String))
 dt.Columns.Add("Account", GetType(String))
 dt.Columns.Add("Amount", GetType(Double))
 dt.Rows.Add("Actual", "2023M3", "Houston Heights", "Net Sales", 100.25)
 dt.Rows.Add("Actual", "2023M3", "South Houston", "Net Sales", 1230.66)

' Compress data table before passing into remote business rule
Dim dtCompress As CompressionResult =

CompressionHelper.CompressJsonObject
(Of DataTable)(si, dt, XFCompressionAlgorithm.DeflateStream)

Dim dtObj(2) As Object ' Create object to store arguments for remote
business rule
 dtObj(0) = dtCompress ' compressed datatable
 dtObj(1) = "SIC_WriteBack" ' remote database table name
 dtObj(2) = "RevenueMgmt" ' remote data source name

Smart Integration Connector Guide 84

Use Smart Integration Connector

' Execute remote business rule to bulk copy to target table
Dim bulkRemoteResults As RemoteRequestResultDto

 =BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, sicRemoteRule,
 dtObj, sicGatewayName,sicRemoteRuleFunction,String.Empty, False, 600)

' Get result status
If bulkRemoteResults.RemoteResultStatus <>

 RemoteMessageResultType.RunOperationReturnObject Then ' Check if
successful

' Failed, do something
 BRAPi.ErrorLog.LogMessage(si,"Failed with status:" &
bulkRemoteResults.
 RemoteResultStatus.ToString)

End If

' Get returned message
Dim returnedMsg As String = CompressionHelper.InflateJsonObject

(Of String)
(si,bulkRemoteResults.resultDataCompressed)

 BRAPi.ErrorLog.LogMessage(si,returnedMsg)

Return Nothing
Catch ex As Exception

Throw ErrorHandler.LogWrite(si, New XFException(si, ex))
End Try

End Function
End Class

End Namespace

The Extensibility Rule above calls the following Smart Integration Function:

Imports System
Imports System.Collections.Generic
Imports System.Data
Imports System.Data.Common
Imports System.Globalization
Imports System.IO
Imports System.Linq
Imports System.Data.SqlClient
Imports OneStream.Shared.Common
Imports OneStreamGatewayService
Namespace OneStream.BusinessRule.SmartIntegrationFunction.SIC_Functions

Public Class MainClass

' Function to bulk copy a compressed data table to a SQL database table
' Pass in compressed data table, database table name and data source name

Smart Integration Connector Guide 85

Use Smart Integration Connector

Public Shared Function RunOperation(dtCompress As CompressionResult,tablename
As String,
 dataSource As String) As String

' ---

' Get SQL connection string
Dim connString As String = APILibrary.GetRemoteDataSourceConnection

(dataSource)

' Inflate compressed datatable
Dim dt As DataTable = CompressionHelper.InflateJsonObject(Of DataTable)
(New SessionInfo,dtCompress)

If dt IsNot Nothing AndAlso dt.Rows.Count > 0 Then
' Check data table has been created and is populated

' Create sql connection to DWH
Using sqlTargetConn As SqlConnection = New SqlConnection(connString)

 sqlTargetConn.Open ' Open connection

Using bulkCopy = New SqlBulkCopy(sqlTargetConn)

 bulkCopy.DestinationTableName = tableName ' DWH table
 bulkCopy.BatchSize = 5000
 bulkCopy.BulkCopyTimeout = 30

 bulkCopy.WriteToServer(dt) ' Bulk copy data table to database
table

End Using

End Using

Else
Throw New Exception("Problem uncompressing data in SIC gateway")

End If

Return $"{dt.Rows.Count} rows bulk inserted into table {tableName}"

End Function

End Class
End Namespace

Smart Integration Connector Guide 86

Use Smart Integration Connector

Support for SFTP

Smart Integration Connector provides support for connecting to SFTP servers to send

and retrieve files. Perform the steps in the following sections to establish a connection

and then send and retrieve files.

IMPORTANT: It is best practice to utilize SSH.NET for Secure File Transfer

Protocol (SFTP) tasks.

IMPORTANT: For current WinSCP users, it is recommended to transition

your SFTP operations to the SSH.NET library. In a future release of

OneStream, WinSCP will be phased out.

NOTE: You must have an SFTP server available on a port. The port must be

allowed for inbound and outbound connections on the Local Gateway

Server. For this example, we have used port 22.

1. Login to OneStream.

2. Navigate to System > Administration > Smart Integration Connector.

3. Create a New Gateway and fill out all of the corresponding details for your Gateway

and the Gateway Server.

4. From Connection Type, select Direct Connection (e.g., SFTP, WebAPI).

5. For Bound Port at Gateway, enter 22.

6. For Remote Gateway Host, enter the IP address or resolvable host name of the

machine where your SFTP server is located.

Smart Integration Connector Guide 87

Use Smart Integration Connector

7. For Bound Port in OneStream, enter -1 to automatically assign an unused port

number. You can also specify your own port number by entering a value greater

than 1024 and less than 65535. It is a best practice to use a higher value because it

is less likely that number will be in use as this port number must be globally unique

across all applications hosted on the OneStream servers.

8. Click OK.

9. Copy the Gateway to the OneStream Smart Integration Connector Local

Gateway Server Configuration.

10. Save the Local Gateway Server configuration and restart the Smart Integration

Connector Gateway service.

Example: Here is an example of how you can upload and

download files through an SFTP extensibility rule.

Smart Integration Connector Guide 88

Use Smart Integration Connector

C# SFTP Example

Below you can find the C# example for STFP.

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Common;
using System.Globalization;
using System.IO;
using System.Linq;
using Microsoft.CSharp;
using OneStream.Finance.Database;
using OneStream.Finance.Engine;
using OneStream.Shared.Common;
using OneStream.Shared.Database;
using OneStream.Shared.Engine;
using OneStream.Shared.Wcf;
using OneStream.Stage.Database;
using OneStream.Stage.Engine;
using Renci.SshNet;
namespace OneStream.BusinessRule.Extender.SFTP_SSH_C
{

public class MainClass
{

public object Main(SessionInfo si, BRGlobals globals, object api, ExtenderArgs
args)

{
try
{

// --
// SSH.NET EXAMPLES
// --

// Setup SSH.NET session options from values in Cloud Administration
Tools (CAT) Key Management - Secrets

var username = BRApi.Utilities.GetSecretValue(si, "SFTP-UserName");
var password = BRApi.Utilities.GetSecretValue(si, "SFTP-Password");
var authenticationMethod = new PasswordAuthenticationMethod(username,

password);
var connectionInfo = new ConnectionInfo("52.151.252.48", username,

authenticationMethod);

// Get the filepath - BatchHarvest in this example is File Share /
Applications / GolfStreamDemo_v36 / Batch / Harvest

var fileDNpath = BRApi.Utilities.GetFileShareFolder(si,
FileShareFolderTypes.BatchHarvest, null);

var fileSFTPpath = Path.Combine(fileDNpath, "SFTP_TEST_DOWNLOAD_" +
DateTime.UtcNow.ToString("MM-dd-yyyy-HHmmss") + ".txt");

var fileSCPpath = Path.Combine(fileDNpath, "SCP_TEST_DOWNLOAD_" +

Smart Integration Connector Guide 89

Use Smart Integration Connector

DateTime.UtcNow.ToString("MM-dd-yyyy-HHmmss") + ".txt");
// SFTP Example
using (var sftpClient = new SftpClient(connectionInfo))

{
 sftpClient.Connect();

using (var downloadStream = new FileStream(fileSFTPpath,
FileMode.OpenOrCreate, FileAccess.Write, FileShare.None))

{
 sftpClient.DownloadFile("SFTP_TEST_DOWNLOAD.txt", downloadStream);
 }
 }

// SCP Example
using (var scpClient = new ScpClient(connectionInfo))
{

 scpClient.Connect();
 scpClient.Download("SFTP_TEST_DOWNLOAD.txt", new FileInfo(fileSCPpath));
 }

return null;
 }

catch (Exception ex)
{

throw ErrorHandler.LogWrite(si, new XFException(si, ex));
 }
 }
 }
}

VB STFP Example

Below you can find the VB example for STFP.

Imports System
Imports System.Collections.Generic
Imports System.Data
Imports System.Data.Common
Imports System.Globalization
Imports System.IO
Imports System.Linq
Imports System.Windows.Forms
Imports Microsoft.VisualBasic
Imports OneStream.Finance.Database
Imports OneStream.Finance.Engine
Imports OneStream.Shared.Common
Imports OneStream.Shared.Database
Imports OneStream.Shared.Engine
Imports OneStream.Shared.Wcf

Smart Integration Connector Guide 90

Use Smart Integration Connector

Imports OneStream.Stage.Database
Imports OneStream.Stage.Engine
Imports Renci.SshNet
Namespace OneStream.BusinessRule.Extender.SFTP_SSH

Public Class MainClass
Public Function Main(ByVal si As SessionInfo, ByVal globals As BRGlobals, ByVal

api As Object, ByVal args As ExtenderArgs) As Object
Try

' --
' SSH.NET EXAMPLES
' --

' Setup SSH.NET session options from values in Cloud Administration Tools
(CAT) Key Management - Secrets

Dim username As String = BRApi.Utilities.GetSecretValue(si, "SFTP-
UserName")

Dim password As String = BRApi.Utilities.GetSecretValue(si, "SFTP-
Password")

Dim authenticationMethod = New PasswordAuthenticationMethod(username,
password)

Dim connectionInfo = New ConnectionInfo("52.151.252.48", username,
authenticationMethod)

'Get the filepath - BatchHarvest in this example is File Share /
Applications / GolfStreamDemo_v36 / Batch / Harvest

Dim fileDNPath As String = BRAPi.Utilities.GetFileShareFolder(si,
FileShareFolderTypes.BatchHarvest, Nothing)

Dim fileSFTPpath = Path.Combine(fileDNpath, "SFTP_TEST_DOWNLOAD_" &
DateTime.UtcNow.ToString("MM-dd-yyyy-HHmmss") & ".txt")

Dim fileSCPpath = Path.Combine(fileDNpath, "SCP_TEST_DOWNLOAD_" &
DateTime.UtcNow.ToString("MM-dd-yyyy-HHmmss") & ".txt")

' SFTP Example
Using sftpClient = New SftpClient(connectionInfo)

 sftpClient.Connect()
Using downloadStream = New FileStream(fileSFTPpath, FileMode.OpenOrCreate,

FileAccess.Write, FileShare.None)
 sftpClient.DownloadFile("SFTP_TEST_DOWNLOAD.txt", downloadStream)

End Using
End Using

' ' SCP Example
Using scpClient As New ScpClient(connectionInfo)

 scpClient.Connect()
 scpClient.Download("SFTP_TEST_DOWNLOAD.txt", New FileInfo
(fileSCPpath))

End Using
Return Nothing
Catch ex As Exception
Throw ErrorHandler.LogWrite(si, New XFException(si, ex))
Return Nothing
End Try

End Function

Smart Integration Connector Guide 91

Use Smart Integration Connector

End Class
End Namespace

Transferring Files from Local FileShare

You can use a Data Management job to move files Smart Integration Connector from a

local FileShare. To do this, you build an extender business rule and call it through a data

management job. This extender business rule will call a Smart Integration Function

(remote function) and obtain the results.

Step 1 - Setup the Remote Server / Remote Share

To get started, setup the Smart Integration Function:

1. Navigate to Application > Tools > Business Rules.

2. Open the Smart Integration Function folder.

3. Create a new business rule (for example, TestFileRead).

4. Copy and paste the following business rule code snippet.

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Common;
using System.Globalization;
using System.IO;
using System.Linq;
namespace OneStream.BusinessRule.SmartIntegrationFunction.TestFileRead
{
public class MainClass
{
public byte[] RunOperation(string year)
{
string fname = @"c:\temp\hw_" + year + ".csv";
byte[] buffer = System.IO.File.ReadAllBytes(fname);
return buffer;

Smart Integration Connector Guide 92

Use Smart Integration Connector

 }
public byte[] GetOtherFileData(string year)
{
string fname = @"c:\temp\zw_" + year + ".csv";
byte[] buffer = System.IO.File.ReadAllBytes(fname);
return buffer;

 }
public bool DeleteOldFileData(string year)
{
string fname = @"c:\temp\zw_" + year + ".csv";
try
{

 System.IO.File.Delete(fname);
return true;

 }
catch (IOException)
{
return false;

 }
 }
 }
}

Step 2 - Pull file from Extender Business Rule

1. Navigate to Application > Tools > Business Rules.

2. Open the Extensibility Rules folder.

3. Create a new business rule (for example, ProcessRemoteFileData).

4. Copy and paste the following business rule code snippet.

Imports System
Imports System.Data
Imports System.Data.Common
Imports System.IO
Imports System.Collections.Generic
Imports System.Globalization
Imports System.Linq
Imports Microsoft.VisualBasic
Imports System.Windows.Forms
Imports OneStream.Shared.Common
Imports OneStream.Shared.Wcf

Smart Integration Connector Guide 93

Use Smart Integration Connector

Imports OneStream.Shared.Engine
Imports OneStream.Shared.Database
Imports OneStream.Stage.Engine
Imports OneStream.Stage.Database
Imports OneStream.Finance.Engine
Imports OneStream.Finance.Database
Namespace OneStream.BusinessRule.Extender.ProcessRemoteFileData

Public Class MainClass
Public Function Main(ByVal si As SessionInfo, ByVal globals As BRGlobals,

ByVal api As Object, ByVal args As ExtenderArgs) As Object
Try

Dim stepNumber As String = "1"

If (Not args.NameValuePairs Is Nothing) Then
' Extracting the value from the parameters collection
If (args.NameValuePairs.Keys.Contains("step")) Then

 stepNumber = args.NameValuePairs.Item("step")
End If

 BRApi.ErrorLog.LogMessage(si, "File Processing Step: " &
stepNumber)

End If

Select Case stepNumber

Case Is = "1"
 GetData(si)

Return Nothing

Case Is = "2"
 CleanupData(si)

Return Nothing

End Select

Catch ex As Exception
Throw ErrorHandler.LogWrite(si, New XFException(si, ex))

End Try

Return Nothing
End Function

Public Sub CleanupData(ByVal si As SessionInfo)

Dim argTest(0) As Object
 argTest(0) = "2023"

' Here we are telling it to specifically call

Smart Integration Connector Guide 94

Use Smart Integration Connector

Dim objRemoteRequestResultDto As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "TestFileRead", argTest,
"entergatewayname", "DeleteOldFileData")

If (objRemoteRequestResultDto.RemoteResultStatus =
RemoteMessageResultType.RunOperationReturnObject) Then

' The delete method returns a true/false return type
Dim result As Boolean
' ObjectResultValue introduced in v7.4 to simplify obtaining

the return value from a method that doesn't return a
' Dataset/Datatable

 result = objRemoteRequestResultDto.ObjectResultValue

Dim objRemoteRequestResultDtoCached As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayCachedBusinessRule(si, "TestFileReadCache",
argTest, "entergatewayname", String.Empty)

 BRApi.ErrorLog.LogMessage(si, "File Deleted: " & result)
Else

If (Not (objRemoteRequestResultDto.remoteException Is Nothing))
Then

Throw ErrorHandler.LogWrite(si, New XFException(si,
objRemoteRequestResultDto.remoteException))

End If
End If

End Sub

Public Sub GetData(ByVal si As SessionInfo)

' Demonstrating how to pass parameters
' We create an object array that matches the number of parameters
' To the remote function. In this case, we have 1 parameter that is

a string
Dim argTest(0) As Object

 argTest(0) = "2023"

' This is where you can allow caching of the remote function. We
are passing in true at the end to force the cache to be updated

' We are also allowing the function to run for 90 seconds.
' String.empty means this will look for a remote function/method

called "RunOperation"
Dim objRemoteRequestResultDto As RemoteRequestResultDto =

BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "TestFileRead", argTest,
"entertestconnection", String.Empty,"TestFileRead", True, 90)

If (objRemoteRequestResultDto.RemoteResultStatus =
RemoteMessageResultType.RunOperationReturnObject) Then

Dim bytesFromFile As Byte()
 bytesFromFile = objRemoteRequestResultDto.ObjectResultValue

Dim valueAsString As String =
System.Text.Encoding.UTF8.GetString(bytesFromFile)

Return valueAsString

Smart Integration Connector Guide 95

Use Smart Integration Connector

 bytesFromFile = Convert.FromBase64String
(objRemoteRequestResultDto.ObjectResultValue)

'bytesFromFile = objRemoteRequestResultDto.ObjectResultValue

Dim valueAsString As String =
System.Text.Encoding.UTF8.GetString(bytesFromFile)

' Do something with the files here....
 BRApi.ErrorLog.LogMessage(si, "File Contents: " & Left
(valueAsString,10))

' We are saving the file into the OneStream Share here
' This is an option to allow other OneStream functions to

process the data
'Dim groupFolderPath As String =

FileShareFolderHelper.GetGroupsFolderForApp(si, True, AppServerConfig.GetSettings
(si).FileShareRootFolder, si.AppToken.AppName)

Dim groupFolderPath As String =
BRAPi.Utilities.GetFileShareFolder(si, FileShareFolderTypes.BatchHarvest, Nothing)

Using sw As StreamWriter = New StreamWriter(groupFolderPath &
"\outputfile.csv")
 sw.Write(valueAsString)
 sw.Close()

End Using
Else

If (Not (objRemoteRequestResultDto.remoteException Is Nothing))
Then

Throw ErrorHandler.LogWrite(si, New XFException(si,
objRemoteRequestResultDto.remoteException))

End If
End If

End Sub

End Class
End Namespace

5. Test your Extender Business Rule via the Execute Extender button in the toolbar.

Smart Integration Connector Guide 96

Use Smart Integration Connector

Step 3 - Automate from Data Management / Task

Scheduler

After the Extensibility Rule has been created and tested you can automate from a Data

Management Job and associate Task Schedule. See Task Scheduler for more

information.

Obtain Data through a WebAPI

In this scenario, you have a WebAPI (IPaaS integration or another accessible REST API) to

obtain and pass back data to OneStream. You can use the following remote business

rule in Smart Integration Connector to invoke the API. If you have results that are in JSON

format, you can convert them to a data table and send them back to OneStream. If the

data from the WebAPI is in JSON, you can process the data in Smart Integrator

Connector. Additionally, you can send the raw data back as a string to a data

management job for further testing.

Direct connections are preferred for this method and can be invoked using business

rules within OneStream similar to the SFTP example provided above.

See Multiple WebAPI Connections for best practices on scenarios with multiple

WebAPIs.

NOTE: Data transferred over a Direct Connection to a WebAPI is transferred

directly over HTTP(S) and not converted to parquet format. OneStream

does not control the return format.

Single WebAPI Connection

To set up a single WebAPI connection:

Smart Integration Connector Guide 97

Use Smart Integration Connector

Task Scheduler.htm

1. Set up a Direct Connection Gateway.

2. Export the Configuration and import to your Local Gateway Server. See the Export

and Import the Gateway Configuration section for more information on this

process.

3. Refresh your Gateways and verify this new Gateway is online.

IMPORTANT: Copy your Bound Port in OneStream. You will reference

this later in the extensibility rule.

Smart Integration Connector Guide 98

Use Smart Integration Connector

4. Create the Extensibility Rule below:

IMPORTANT: If you copy the business rule below and are having

trouble communicating with your webAPI after compiling, ensure that

you have set your host header correctly. Refer to "api.open-

meteo.com" in the code sample below.

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Common;
using System.Globalization;
using System.IO;
using System.Linq;
using OneStream.Shared.Common;
using OneStream.Shared.Database;
using OneStream.Shared.Engine;
using OneStream.Shared.Wcf;
using System.Net;
using System.Net.Http;
using Newtonsoft.Json;
using System.Net.Http.Headers;

Smart Integration Connector Guide 99

Use Smart Integration Connector

namespace OneStream.BusinessRule.Extender.SIC_WebAPI
{

public class MainClass
{

private static readonly HttpClient internalHttpClient = new HttpClient();

public object Main(SessionInfo si, BRGlobals globals, object api,
ExtenderArgs args)

{
try
{

 internalHttpClient.DefaultRequestHeaders.Accept.Clear();
 internalHttpClient.DefaultRequestHeaders.Accept.Add
(new MediaTypeWithQualityHeaderValue("application/json"));
 internalHttpClient.DefaultRequestHeaders.Accept.Add
(new MediaTypeWithQualityHeaderValue("application/x-www-form-urlencoded"));
 internalHttpClient.DefaultRequestHeaders.Accept.Add
(new MediaTypeWithQualityHeaderValue("application/octet-stream"));
 internalHttpClient.DefaultRequestHeaders.Accept.Add
(new MediaTypeWithQualityHeaderValue("text/plain"));
 internalHttpClient.DefaultRequestHeaders.Accept.Add
(new MediaTypeWithQualityHeaderValue("*/*"));

// The header must be set or some connections maybe refused.
 internalHttpClient.DefaultRequestHeaders.Host = "api.open-
meteo.com";

// In this example, 20540 is the Bound Port in OneStream for the
Gateway being used.

var stringTask = internalHttpClient.GetStringAsync
("https://localhost:20540/v1/forecast?latitude=40.73&longitude=-
73.94&daily=temperature_2m_max,temperature_2m_min&temperature_
unit=fahrenheit&timezone=America%2FNew_York");

// Display the result in the exception dialog as an example.
throw new Exception(stringTask.Result);

 }
catch (Exception ex)
{

throw ErrorHandler.LogWrite(si, new XFException(si, ex));
 }
 }
 }
}

5. Compile and test the business rule. If the extensibility ran successfully, you should

see the correct data that corresponds with the business rule in the Exception dialog

Smart Integration Connector Guide 100

Use Smart Integration Connector

box.

Multiple WebAPI Connections

If you are using more than one WebAPI, the best practice is to perform this process using

a single Gateway and multiple remote Business Rules.

Use the following OneStream business rule to invoke the request.

Dim objRemoteRequestResultDto As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "RemoteWebAPISample", Nothing,
"testconnection",String.Empty) If (objRemoteRequestResultDto.RemoteResultStatus =
RemoteMessageResultType.Success) Dim xfDT = New XFDataTable
(si,objRemoteRequestResultDto.resultSet,Nothing,1000) End If

Use the following remote business rule to execute the request in C#.

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Common;
using System.Globalization;
using System.IO;
using System.Linq;
using System.Net;
using System.Net.Http;
using Newtonsoft.Json;
using System.Net.Http.Headers;
namespace OneStream.BusinessRule.SmartIntegrationFunction.RemoteWebAPISample
{
public class MainClass
{
private static readonly HttpClient internalHttpClient = new HttpClient();

static MainClass()
{

 internalHttpClient.DefaultRequestHeaders.Accept.Clear();
 internalHttpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue
("application/json"));
 internalHttpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue
("application/x-www-form-urlencoded"));
 internalHttpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue
("application/octet-stream"));
 internalHttpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue
("text/plain"));

Smart Integration Connector Guide 101

Use Smart Integration Connector

 internalHttpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue
("*/*"));
 }

public DataTable RunOperation()
{
var stringTask = internalHttpClient.GetStringAsync

(https://localhost:44388/WeatherForecast);
var msg = stringTask;

 DataTable dt = (DataTable)JsonConvert.DeserializeObject(stringTask.Result, (typeof
(DataTable)));
return dt;

 }
 }
}

Sending Email through Smart Integration Direct

Connections

Prior to using this business rule, you must have your email server configured. You must

establish a direct connection before sending email. See Single Web API Connection for

more information on setting up an initial direct connection. The following business rule

can send email from an Extender Business rule.

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Common;
using System.Globalization;
using System.IO;
using System.Linq;
using Microsoft.CSharp;
using OneStream.Finance.Database;
using OneStream.Finance.Engine;
using OneStream.Shared.Common;
using OneStream.Shared.Database;
using OneStream.Shared.Engine;
using OneStream.Shared.Wcf;
using OneStream.Stage.Database;
using OneStream.Stage.Engine;

Smart Integration Connector Guide 102

Use Smart Integration Connector

using System.Net.Mail;
using System.Net;
using System.Net.Security;
using System.Text.RegularExpressions;
using System.Security.Cryptography.X509Certificates;
namespace OneStream.BusinessRule.Extender.smtp_direct_test
{

public class MainClass
{

public SessionInfo SI;
private const string smtpHostName = "smtp.azurecomm.net"; // expected name to

match the cert.

public object Main(SessionInfo si, BRGlobals globals, object api, ExtenderArgs
args)

{
var client = new SmtpClient();
var email = new MailMessage();

try
{

 SI = si;
// Add custom validation callback to look for expected cert (Host will be

localhost, which causes this to fail without a custom callback)
 ServicePointManager.ServerCertificateValidationCallback +=
ValidationCallback;

 client.UseDefaultCredentials = false;
 client.Port = 20542;
 client.Host = "localhost";
 client.EnableSsl = true;
 client.Credentials = new System.Net.NetworkCredential("<UserName>",
"<Password>");

 email.From = new MailAddress("DoNotReply@domain.com");
 email.To.Add("test@onestreamsoftware.com");
 email.Subject = "Test from SIC Gateway";
 email.IsBodyHtml = false;
 email.Body = "Forwarded test from SIC Gateway";

 client.Send(email);

return null;
 }

catch (Exception ex)
{

throw ErrorHandler.LogWrite(si, new XFException(si, ex));
 }

finally
{

// Remove the custom ValidationCallback. It's recommended to remove this
before any other network calls.

Smart Integration Connector Guide 103

Use Smart Integration Connector

 ServicePointManager.ServerCertificateValidationCallback -=
ValidationCallback;
 email.Dispose();
 client.Dispose();
 }
 }

public bool ValidationCallback(object sender, X509Certificate certificate,
X509Chain chain, SslPolicyErrors sslPolicyErrors)

{
var policyErrors = (sslPolicyErrors as SslPolicyErrors?) ??

SslPolicyErrors.None;
var certSubject = certificate?.Subject ?? string.Empty;
var certName = string.Empty;

// Extract the certName from the certSubject
string namePattern = @"CN=([^,]+)";
var match = Regex.Match(certSubject, namePattern);
if (match.Success)
{

 certName = match.Groups[1].Value;

 }
if (

(policyErrors == SslPolicyErrors.RemoteCertificateNameMismatch ||
policyErrors == SslPolicyErrors.None)
 && certName == smtpHostName)

{
// verify the certName matches the expected smtpHostName. No other

SslPolicyErrors should be present.
return true;

 }
else
{

return false;
 }
 }
 }
}

Support for DLL Migration

For OneStream Platform version 8.0 and above, all customer-supplied DLLs will be

referenced through Smart Integration Connector. To use a DLL, copy the DLLs to the

Referenced Assemblies Folder in the Local Gateway Server Utility and reference this

DLL within your Smart Integration Function. See Referenced Assemblies Folder.

Smart Integration Connector Guide 104

Use Smart Integration Connector

To verify the Referenced Assemblies Folder path:

1. Open the OneStream Local Gateway Configuration and Run as Administrator.

2. Navigate to and open Local Application Data Settings.

3. The file path under Referenced Assemblies Folder opens to the default location.

4. Click the OK button.

See the following SAP example for this process in use. See Smart Integration Connector

Settings for more information on these fields.

Support for ERPConnect (SAP)

As an alternative to creating a Local Gateway Connection to your SAP database, you can

connect to SAP using third-party DLLs, such as ERPConnect##.dll. ERPConnect##.dll can

be referenced using a Smart Integration Connector Remote business rule. Although

ERPConnect45.dll can no longer enable a connection to SAP systems starting with

Platform version 8.0, a newer version ERPConnectStandard20.dll is available through the

download DLL Packages from the Platform page of the Solution Exchange. ERPConnect

requires additional libraries to be obtained from SAP as well, which can reside in the same

reference assembly folder as ERPConnect.

Smart Integration Connector Guide 105

Use Smart Integration Connector

https://solutionexchange.onestream.com/dashboard/home/browse

For additional information, see the Theobald Software ERPConnect Help Center .

To get started:

1. From the Platform page of the Solution Exchange, download the DLL Packages,

which contains the ERPConnectStandard20.dll file.

2. Extract the compressed zip file and then move the ERPConnectStandard20.dll to

your Referenced Assemblies Folder.

3. Install the required Visual C++ Redistributable latest supported downloads.

4. Login to your sap.com account and then download SAP NetWeaver RFC Library

DLL (sapnwrfc.dll) and associated icudt57.dll, icuin57.dll, icuuc57.dll files.

l Copy SAP NetWeaver RFC Library DLL (sapnwrfc.dll) to the Referenced

Assemblies folder.

l Copy icudt57.dll, icuin57.dll, and icuuc57.dll to C:\Windows\System32.

5. Modify your business rules to use the ERPConnectStandard20.dll.

6. Navigate to Application > Tools > Business Rules.

7. Expand the Smart Integration Function list.

8. Create a new Smart Integration Function or select an existing one.

Smart Integration Connector Guide 106

Use Smart Integration Connector

https://helpcenter.theobald-software.com/erpconnect/documentation/introduction/
https://solutionexchange.onestream.com/dashboard/home/browse
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170#latest-microsoft-visual-c-redistributable-version

9. Click the Properties tab.

10. Enter ERPConnectStandard20.dll in the Referenced Assemblies field. The Smart

Integration Connector Gateway server will attempt to locate this DLL in the

previously defined folder: Referenced BusinessRule AssemblyFolder.

Smart Integration Connector Guide 107

Use Smart Integration Connector

11. Add Imports for ERPConnect and ERPConnect.Utils.

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Common;
using System.Globalization;
using System.IO;
using System.Linq;
using ERPConnect;
using ERPConnect.Utils;
namespace OneStream.BusinessRule.SmartIntegrationFunction.ERP_Connect_Test
{

public class MainClass
{
public const string UserName = "";
public const string Password = "";
public const string Host = "";
public DataTable RunOperation()
{

using (R3Connection con = new R3Connection())
{

 con.UserName = UserName;
 con.Password = Password;
 con.Language = "EN";
 con.Client = "800";
 con.Host = Host;
 con.SystemNumber = 00;
 con.Protocol = ClientProtocol.NWRFC; // Optional: If the NW RFC libraries are

used.
 con.UsesLoadBalancing = false;
 con.Open();
 ReadTable table = new ReadTable(con);
 table.AddField("MATNR");
 table.AddField("MAKTX");
 table.WhereClause = "SPRAS = 'EN' AND MATNR LIKE '%23'";
 table.TableName = "MAKT";
 table.RowCount = 10;
 table.Run();
return table.Result;

}
}

}
}

12. Verify you can compile the function on your Gateway.

You are now ready to add your custom code.

Smart Integration Connector Guide 108

Use Smart Integration Connector

Business Rules

The Smart Integration Connector Capabilities introduce additional business rule APIs (BR

APIs) to allow for execution and management of remote business rules inside the context

of the Smart Integration Connector gateway. These rules are transported using https to

the Smart Integration Connector local gateway, compiled locally, executed, and the

results returned to the caller for further processing. They provide a mechanism for

complex drill backs, data processing scenarios or to invoke remote webAPIs hosted in

your network.

NOTE: Gateways must have a local data source defined to invoke remote

business rules.

There are two ways business rules can be used with the Smart Integration Connector

Gateway:

l OneStream BRAPIs interact with a specific local gateway and run on OneStream

application servers.

l Business rules that reference DLLs that are only accessible by the Local Gateway

Server. These BRs are compiled and executed on the local gateway (Remote

Business Rules when creating them in the Windows Desktop Client).

In these scenarios, the local gateway must have the allowRemoteCodeExec setting

configured to True to enable remote execution.

The BR APIs are outlined below:

ExecRemoteGatewayRequest

Smart Integration Connector Guide 109

Business Rules

ExecRemoteGatewayCachedBusinessRule

ExecRemoteGatewayJob

ExecRemoteGatewayBusinessRule

GetRemoteDataSourceConnection

GetRemoteGatewayJobStatus

GetSmartIntegrationConfigValue

GetGatewayConnectionInfo

Check OneStream Version

BRApi.Utilities.IsGatewayOnline(gwName)

Business Rules Compatibility

ExecRemoteGatewayRequest

Initiates a request to a local gateway as specified in the remote request object. This

request is dispatched to the Smart Integration Connector local gateway connection data

source with the specified command remote invoked.

NOTE: This method is used for request and response type interactions to a

remote endpoint that runs for three or less minutes. The default execution

Smart Integration Connector Guide 110

Business Rules

#GetRemot2
#GetSmart
#BRApi.Ut

timeout is 90 seconds and can be overridden by setting the

CommandTimeout property on the RemoteRequestDTO instance provided.

Parameter details:

l RemoteRequestDTO: Remote request object populated with the remote command

and endpoint

l Returns: RemoteRequestResultDto - Result of execution including the status and

any exceptions which may have occurred on the remote endpoint

Following is an example connector business rule that would run on the OneStream

application server sending a remote request and block of code to a Local Gateway

Connection:

// ExecRemoteGatewayRequest for arbitrary code execution returning a DataTable
string GatewayName = "";
RemoteRequestResultDto objxfRemoteRequestResultDto;
RemoteCodeRequestDto objxfRemoteRequest = new RemoteCodeRequestDto();
// Indication the desire is to run a remote block of code
objxfRemoteRequest.ConnectionType = RemoteCommandType.RemoteCodeExec;
// Name of the remote host to pass to
objxfRemoteRequest.GatewayHostForRequest = GatewayName;
var strCode = "using System;...."; // Valid block of C# or VB.NET code
objxfRemoteRequest.LanguageType = RemoteCodeLanguageType.CSHARP;
objxfRemoteRequest.RemoteCodeBlock = strCode;
objxfRemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayRequest
(objxfRemoteRequest);
var xfDT = new XFDataTable(si, objxfRemoteRequestResultDto.ResultSet, null, 1000);

Here is the example in VB:

' ExecRemoteGatewayRequest for arbitrary code execution returning a DataTable
Dim GatewayName As String = ""
Dim objxfRemoteRequestResultDto As RemoteRequestResultDto
Dim objxfRemoteRequest As New RemoteCodeRequestDto
' Indication the desire is to run a remote block of code
objxfRemoteRequest.connectionType = RemoteCommandType.RemoteCodeExec
' Name of the remote host to pass to

Smart Integration Connector Guide 111

Business Rules

objxfRemoteRequest.gatewayHostforRequest = GatewayName
Dim strCode As String = "using System;...." ' Valid block of C# or VB.NET code
objxfRemoteRequest.LanguageType = RemoteCodeLanguageType.CSHARP
objxfRemoteRequest.remoteCodeBlock = strCode
objxfRemoteRequestResultDto=BRApi.Utilities.ExecRemoteGatewayRequest(objxfRemoteRequest)
Dim xfDT = New XFDataTable(si, objxfRemoteRequestResultDto.ResultSet, Nothing, 1000)

This BR API can also be used to invoke arbitrary SQL commands against a Smart

Integration Connector local gateway connection data source at your site:

/ ExecRemoteGatewayRequest for arbitrary SQL returning a DataTable
string SQL = ""; // SQL SELECT statement goes here
RemoteRequestResultDto objxfRemoteRequestResultDto;
RemoteRequestDto objxfRemoteRequest = new RemoteRequestDto();
// Indicate this is a remote SQL command request
objxfRemoteRequest.ConnectionType = RemoteCommandType.SQLCommand;
objxfRemoteRequest.RelayRemoteDBConnection = ""; // Name of the connection defined in the
remote endpoint
objxfRemoteRequest.GatewayHostForRequest = ""; // Name of the remote host to pass to
objxfRemoteRequest.RemoteCommand = SQL;
objxfRemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayRequest
(objxfRemoteRequest);
// Evaulate the results to determine if it was successful
if (objxfRemoteRequestResultDto.RemoteResultStatus == RemoteMessageResultType.Success)
{
// Logic to use results in `objxfRemoteRequestResultDto.ResultSet`

}
else
{
// Query failed. Add additional logic here to handle this case.

}

Here is the example in VB:

' ExecRemoteGatewayRequest for arbitrary SQL returning a DataTable
Dim SQL As String = "" ' SQL SELECT statement goes here
Dim objxfRemoteRequestResultDto As RemoteRequestResultDto
Dim objxfRemoteRequest As New RemoteRequestDto
' Indicate this is a remote SQL command request
objxfRemoteRequest.connectionType = RemoteCommandType.SQLCommand
objxfRemoteRequest.RelayRemoteDBConnection = "" ' Name of the connection defined in the
remote endpoint
objxfRemoteRequest.GatewayHostforRequest = "" ' Name of the remote host to pass to
objxfRemoteRequest.RemoteCommand = SQL
objxfRemoteRequestResultDto=BRApi.Utilities.ExecRemoteGatewayRequest(objxfRemoteRequest)

Smart Integration Connector Guide 112

Business Rules

' Evaulate the results to determine if it was successful
If (objxfRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.Success)
Then
' Logic to use results in `objxfRemoteRequestResultDto.ResultSet`

Else
' Query failed. Add additional logic here to handle this case.

End If

Remote function returning a datatable (C#) without parameters:

// ExecRemoteGatewayBusinessRule
var GatewayName = ""; // Name of the Gateway
var SICFunctionName = ""; // Name of the SIC Function to run
var RemoteMethodName = ""; // Name of the method inside the SIC Function that will be
called
var objRemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayBusinessRule(si,
GatewayName, null, SICFunctionName, RemoteMethodName);
if (objRemoteRequestResultDto.RemoteResultStatus == RemoteMessageResultType.Success && !
(objRemoteRequestResultDto.ResultSet is null))
{
if (objRemoteRequestResultDto.ResultType == RemoteResultType.DataTable)
{

 BRApi.ErrorLog.LogMessage(si, "Data Returned: " +
objRemoteRequestResultDto.ResultSet.Rows.Count);
 }
}
else
{
if (!(objRemoteRequestResultDto.RemoteException is null))
{
throw ErrorHandler.LogWrite(si, new XFException(si,

objRemoteRequestResultDto.RemoteException));
 }
}

Here is the example in VB:

' ExecRemoteGatewayBusinessRule

' Call a remote Smart Integration Function
Dim GatewayName As String = "" ' Name of the Gateway
Dim SICFunctionName As String = "" ' Name of the SIC Function to run
Dim RemoteMethodName As String = "" ' Name of the method inside the SIC Function that
will be called
Dim objRemoteRequestResultDto As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, GatewayName, Nothing, SICFunctionName,
RemoteMethodName)

Smart Integration Connector Guide 113

Business Rules

If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.Success
AndAlso objRemoteRequestResultDto.ResultSet IsNot Nothing) Then
If (objRemoteRequestResultDto.ResultType = RemoteResultType.DataTable) Then

 BRApi.ErrorLog.LogMessage(si, "Data Returned: " &
objRemoteRequestResultDto.ResultSet.Rows.Count)
End If

Else
If (Not (objRemoteRequestResultDto.RemoteException Is Nothing)) Then
Throw ErrorHandler.LogWrite(si, New XFException(si,

objRemoteRequestResultDto.RemoteException))
End If

End If

ExecRemoteGatewayCachedBusinessRule

When a cache flag and key is provided to the ExecRemoteGatewayBusinessRule BR API,

this method is used to invoke a previously cached method. This is intended to be used for

high-frequency remote business rules to avoid the performance impact of recompiling a

remote method on each invocation.

NOTE: Requires allowRemoteCodeExec = True on Smart Integration

Connector local gateway. If the previously cached method is not invoked

after 60 minutes, the remote cached method is purged.

Parameter details:

l si: SessionInfo object used to create connection objects

l cachedFunctionKey: Key of previously cached remote function to invoke

l functionArguments: Array of objects aligning to function / method parameters. Null

/ Nothing if there are none required

l remoteHost: Name of remote host to invoke operation. (Smart Integration

Connector Local Gateway Name)

Smart Integration Connector Guide 114

Business Rules

l executionTimeOut: Timeout (in seconds) on the remote job

l Returns: RemoteRequestResultDto - Result of execution including the status and

any exceptions which may have occurred on the remote endpoint

Here is the rule in C#:

// ExecRemoteGatewayCachedBusinessRule

// Execute and cache a remote SIC Function for later use
var GatewayName = ""; // Name of the Gateway
var SICFunctionName = ""; // Name of the SIC Function to run
var RemoteMethodName = ""; // Name of the method inside the SIC Function that will be
called
var SICCachedFunctionName = ""; // Name of the cache key for this SIC Function, which can
be called on subsequent requests
RemoteRequestResultDto objRemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, SICFunctionName, null, GatewayName,
RemoteMethodName, SICCachedFunctionName, false, 90);

if (objRemoteRequestResultDto.RemoteResultStatus == RemoteMessageResultType.Success
 && !(objRemoteRequestResultDto.ResultSet is null)
 && objRemoteRequestResultDto.ResultType == RemoteResultType.DataTable)
{
 BRApi.ErrorLog.LogMessage(si, "Data Returned - Rows:" +
objRemoteRequestResultDto.ResultSet.Rows.Count);
}
else
{
if (objRemoteRequestResultDto.RemoteException != null)
{
throw ErrorHandler.LogWrite(si, new XFException(si,

objRemoteRequestResultDto.RemoteException));
 }
else
{

 BRApi.ErrorLog.LogMessage(si, "Remote Smart Integration Function Succeeded - no
data/datatable returned");
 }
}

// Subsequent invocations of the remote BR can be run by specifying the endpoint and the
cached key name
RemoteRequestResultDto objRemoteRequestResultDtoCached =
BRApi.Utilities.ExecRemoteGatewayCachedBusinessRule(si, SICCachedFunctionName , null,
GatewayName, 90);

Here is the rule in VB.NET:

Smart Integration Connector Guide 115

Business Rules

' ExecRemoteGatewayCachedBusinessRule

' Execute and cache a remote SIC Function for later use
Dim GatewayName As String = "" ' Name of the Gateway
Dim SICFunctionName As String = "" ' Name of the SIC Function to run
Dim RemoteMethodName As String = "" ' Name of the method inside the SIC Function that
will be called
Dim SICCachedFunctionName As String = "" ' Name of the cache key for this SIC Function,
which can be called on subsequent requests
Dim objRemoteRequestResultDto As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, SICFunctionName, Nothing, GatewayName,
RemoteMethodName, SICCachedFunctionName, False, 90)

If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.Success
AndAlso objRemoteRequestResultDto.ResultSet IsNot Nothing AndAlso
objRemoteRequestResultDto.ResultType = RemoteResultType.DataTable) Then
 BRApi.ErrorLog.LogMessage(si, "Data Returned - Rows:" +
objRemoteRequestResultDto.ResultSet.Rows.Count)
Else
If (objRemoteRequestResultDto.RemoteException IsNot Nothing) Then
Throw ErrorHandler.LogWrite(si, New XFException(si,

objRemoteRequestResultDto.RemoteException))
Else

 BRApi.ErrorLog.LogMessage(si, "Remote Smart Integration Function Succeeded - no
data/datatable returned")
End If

End If

' Subsequent invocations of the remote BR can be run by specifying the endpoint and the
cached key name
Dim objRemoteRequestResultDtoCached As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayCachedBusinessRule(si, SICCachedFunctionName, Nothing,
GatewayName, 90)

ExecRemoteGatewayJob

There may be instances where a remote operation on the Smart Integration Connector

Local Gateway host would need to process and assemble data that may take several

minutes to run. In this situation, you could use this BR API to queue and run a remote

business rule in an asynchronous manner where the remote Smart Integration Connector

Local Gateway host returns a Job ID (GUID) that can later be used to obtain the job’s

status or the results if the job is complete. When invoking this method, if the

RemoteMessageResultStatus is returned as JobRunning (as shown in the example

Smart Integration Connector Guide 116

Business Rules

below), the RequestJobID is populated with the ID of the queued job that can later be

used to obtain status.

NOTE: Requires allowRemoteCodeExec = True on Smart Integration

Connector Local Gateway. There is a defined default limit of 30 minutes for

remote jobs to execute before the job is cancelled, and an overloaded

version of ExecremoteGatewayJob exists allowing the timeout to be

provided, but can never exceed 4 hours. This is not configurable and if this

timeout is reached, the status returned shows the timeout. If the result is not

obtained within five minutes after the job completes (using the

GetRemoteGatewayJobStatus BR API), the remote results are purged to

ensure that result objects reclaim server memory on the Smart Integration

Service host.

NOTE: This is required to call back into GetRemoteJobStatus with the

returned ID to obtain the result:

Here is a basic overview of invoking a remote job and displaying the returned remote Job

ID in C#.

// ExecRemoteGatewayJob basic example

var GatewayName = ""; // Name of the Gateway
var SICFunctionName = ""; // Name of the SIC Function to run
var argTest = new object[2];
argTest[0] = 100; // Example first argument to SIC Function
argTest[1] = "test"; // Example second argument to SIC Function

// Invoking a OneStream SIC Function Business Rule as a remote job
var objRemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayJob(si, SICFunctionName,
argTest, GatewayName, String.Empty);
if (objRemoteRequestResultDto.RemoteResultStatus == RemoteMessageResultType.JobRunning)
{
// Logic to wait for job to complete

}

Smart Integration Connector Guide 117

Business Rules

Here is the basic example in VB:

' ExecRemoteGatewayJob basic example

Dim GatewayName As String = "" ' Name of the Gateway
Dim SICFunctionName As String = "" ' Name of the SIC Function to run
Dim argTest(1) As Object
argTest(0) = 100 ' Example first argument to SIC Function
argTest(1) = "test" ' Example second argument to SIC Function

' Invoking a OneStream SIC Function Business Rule as a remote job
Dim objRemoteRequestResultDto As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayJob(si, SICFunctionName, argTest, GatewayName,
String.Empty)
If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.JobRunning)
Then
' Logic to wait for job to complete

End If

Here is the rule in C# to invoke a job, obtain the job ID, and 'poll' until completion:

// ExecRemoteGatewayJob with polling

var jobID = new Guid();
var GatewayName = ""; // Name of the Gateway
var SICFunctionName = ""; // Name of the SIC Function to run

// Invoke a long-running Job with a Smart Integration Function
var objRemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayJob(si, GatewayName,
null, SICFunctionName, String.Empty);

// If Successful, the status is retuned indicating the job is running with the job ID.
Use this ID to interrogate if the job is compleed.
if (objRemoteRequestResultDto.RemoteResultStatus == RemoteMessageResultType.JobRunning)
{
 jobID = objRemoteRequestResultDto.RequestJobID;
 BRApi.ErrorLog.LogMessage(si, "Remote Job Queued and Running - JobID: " + jobID.ToString
());
// Example waiting 20 seconds for job to complete
for (var loopControl = 0; loopControl < 10; loopControl++)
{

 System.Threading.Thread.Sleep(2000);
var objJobStatus = BRApi.Utilities.GetRemoteGatewayJobStatus(si, jobID, GatewayName);

if (objJobStatus.RemoteJobState == RemoteJobState.Running)
{

 BRApi.ErrorLog.LogMessage(si, "Remote Job Still running - JobID: " + jobID.ToString());
 }
else if (objJobStatus.RemoteJobState == RemoteJobState.Completed)

Smart Integration Connector Guide 118

Business Rules

{
// Checking the return type from the remote job
if (!(objJobStatus.RemoteJobResult.ResultSet is null))
{
var xfDT = new XFDataTable(si, objJobStatus.RemoteJobResult.ResultSet, null, 1000);

 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Datatable Returned - JobID: " +
jobID.ToString());
return null;

 }
else if (!(objJobStatus.RemoteJobResult.ResultDataSet is null))
{
var xfDT = new XFDataTable(si, objJobStatus.RemoteJobResult.ResultDataSet.Tables[0],

null, 1000);
 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Dataset Returned - JobID: " +
jobID.ToString());
return null;

 }
else if (!(objJobStatus.RemoteJobResult.ResultDataCompressed is null))
{

 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Object Returned - JobID: " +
jobID.ToString());
var value = CompressionHelper.InflateJsonObject<String>(si,

objJobStatus.RemoteJobResult.ResultDataCompressed);
 BRApi.ErrorLog.LogMessage(si, value);
return null;

 }
 }
else if (objJobStatus.RemoteJobState == RemoteJobState.JobNotFound)
{

 BRApi.ErrorLog.LogMessage(si, "Remote Job Not Found - JobID: " + jobID.ToString());
return null;

 }
else if (objJobStatus.RemoteJobState == RemoteJobState.RequestTimeOut)
{

 BRApi.ErrorLog.LogMessage(si, "Remote Job Timed Out - JobID: " + jobID.ToString());
return null;

 }
else if (objRemoteRequestResultDto.RemoteResultStatus ==

RemoteMessageResultType.Exception)
{

 BRApi.ErrorLog.LogMessage(si, "Exception During Execution of Job: " +
objRemoteRequestResultDto.RemoteException.ToString());
 }
 }
}
else
{
// Exception occurred immediately during compile/initial run
if (objRemoteRequestResultDto.RemoteResultStatus == RemoteMessageResultType.Exception)
{

 BRApi.ErrorLog.LogMessage(si, "Exception Executing Job: " +
objRemoteRequestResultDto.RemoteException.ToString());

Smart Integration Connector Guide 119

Business Rules

 }
else
{

 BRApi.ErrorLog.LogMessage(si, "General Job Execution Error - State: " +
objRemoteRequestResultDto.RemoteResultStatus.ToString());
 }
}

return null;

Here is the rule in VB.NET to invoke a job, obtain the job ID, and 'poll' until completion:

' ExecRemoteGatewayJob with polling

Dim jobID As Guid
Dim GatewayName As String = "" ' Name of the Gateway
Dim SICFunctionName As String = "" ' Name of the SIC Function to run

' Invoke a long-running Job with a Smart Integration Function
Dim objRemoteRequestResultDto As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayJob(si, GatewayName, Nothing, SICFunctionName,
String.Empty)

' If Successful, the status is retuned indicating the job is running with the job ID. Use
this ID to interrogate if the job is compleed.
If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.JobRunning)
Then
 jobID = objRemoteRequestResultDto.RequestJobID
 BRApi.ErrorLog.LogMessage(si, "Remote Job Queued and Running - JobID: " & jobID.ToString
())
' Example waiting 20 seconds for job to complete
For loopControl = 0 To 10

 System.Threading.Thread.Sleep(2000)
Dim objJobStatus As RemoteJobStatusResultDto = BRApi.Utilities.GetRemoteGatewayJobStatus

(si, JobID, GatewayName)

If (objJobStatus.RemoteJobState = RemoteJobState.Running) Then
 BRApi.ErrorLog.LogMessage(si, "Remote Job Still running - JobID: " & jobID.ToString())
Else If (objJobStatus.RemoteJobState = RemoteJobState.Completed)
' Checking the return type from the remote job
If (objJobStatus.RemoteJobResult.ResultSet IsNot Nothing) Then
Dim xfDT As XFDataTable = New XFDataTable(si, objJobStatus.RemoteJobResult.ResultSet,

Nothing, 1000)
 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Datatable Returned - JobID: " &
jobID.ToString())
Return Nothing
Else If (Not objJobStatus.RemoteJobResult.ResultDataSet Is Nothing) Then
Dim xfDT As XFDataTable = New XFDataTable

(si,objJobStatus.RemoteJobResult.ResultDataSet.Tables(0), Nothing, 1000)
 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Dataset Returned - JobID: " &

Smart Integration Connector Guide 120

Business Rules

jobID.ToString())
Return Nothing
Else If objJobStatus.RemoteJobResult.ResultDataCompressed IsNot Nothing Then

 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Object Returned - JobID: " &
jobID.ToString())
Dim value As String = CompressionHelper.InflateJsonObject(Of String)(si,

objJobStatus.RemoteJobResult.ResultDataCompressed)
 Brapi.ErrorLog.LogMessage(si, value)
Return Nothing
End If
Else If (objJobStatus.RemoteJobState = RemoteJobState.JobNotFound) Then

 BRApi.ErrorLog.LogMessage(si, "Remote Job Not Found - JobID: " & jobID.ToString())
Return Nothing
Else If (objJobStatus.RemoteJobState = RemoteJobState.RequestTimeOut) Then

 BRApi.ErrorLog.LogMessage(si, "Remote Job Timed Out - JobID: " & jobID.ToString())
Return Nothing
Else If (objRemoteRequestResultDto.RemoteResultStatus =

RemoteMessageResultType.Exception) Then
 BRApi.ErrorLog.LogMessage(si, "Exception During Exeuction of Job: " &
objRemoteRequestResultDto.RemoteException.ToString())
End If
Next

Else
' Exception occurred immediately during compile/initial run
If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.Exception)

Then
 BRApi.ErrorLog.LogMessage(si, "Exception Executing Job: " &
objRemoteRequestResultDto.RemoteException.ToString())
Else

 BRApi.ErrorLog.LogMessage(si, "General Job Execution Error - State: " &
objRemoteRequestResultDto.RemoteResultStatus.ToString())
End If

End If

Return Nothing

ExecRemoteGatewayBusinessRule

This is a core BR API that can be used to remotely invoke Smart Integration functions on a

specified remote Smart Integration Connector Local Gateway host. The Smart

Integration Connector Local Gateway must have allowRemoteCodeExec set to True for

this BR API to invoke an operation successfully, otherwise the Smart Integration

Connector Local Gateway host returns a result indicating that remote code execution is

disabled.

Smart Integration Connector Guide 121

Business Rules

This method takes a previously authored Smart Integration function, written in VB.NET or

C#, in the OneStream application and passes it to the remote host for execution. With

this BR API, it is expected that remote calls should take no more than 2-3 minutes to

return a result to the caller as this BR API will block until a result is returned. If longer

running or sync operations are needed, consider using the execRemoteGatewayJob BR

API.

NOTE: Requires allowRemoteCodeExec = True on Smart Integration Service

Parameter details:

l si: SessionInfo object used to create connection objects

l brName: Name of the locally defined (within the OneStream Application scope)

Smart Integration function

l functionArguments: Array of objects aligning to function / method parameters. Null

/ Nothing if there are none required.

l remoteHost: Name of remote host to invoke operation. (Smart Integration

Connector name)

l functionName: Name of the function in the Smart Integration function to invoke. If

null or empty, a function/method with the name RunOperation is expected to exist

within the authored code.

l (Optional) cachedFunctionKey: Name used to cache the remote function to avoid

recompiling the function on a subsequent call. This is optional and if missing or null

the function will not be cached.

l (Optional) forceCacheUpdate: Option indicating if a previously cached function

should be replaced with this version. When true, and an existing function is found

Smart Integration Connector Guide 122

Business Rules

with a name specified in the cachedFunctionKey parameter, the BR is recompiled

and recached. This is useful for situations where a remote function is cached and a

change was made.

l executionTimeOut: Timeout (in seconds) on the remote job (In 7.4, this is now an

optional parameter and defaults to 90 seconds if the parameter is missing.)

Here is a C# drill-back example:

// ExecRemoteGatewayBusinessRule displaying results in drillback
var GatewayName = ""; // Name of the Gateway
var SICFunctionName = ""; // Name of the SIC Function to run
DrillBackResultInfo drillBackInfo = new DrillBackResultInfo();
DataTable dtf = BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, SICFunctionName, null,
GatewayName, string.Empty).ResultSet;
var xfDT = new XFDataTable(si, dtf, null, 1000);
drillBackInfo.DataTable = xfDT;
drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.DataGrid;
return drillBackInfo;

Here is a VB example:

' ExecRemoteGatewayBusinessRule displaying results in drillback
Dim GatewayName As String = "" ' Name of the Gateway
Dim SICFunctionName As String = "" ' Name of the SIC Function to run
Dim drillBackInfo As DrillBackResultInfo = new DrillBackResultInfo()
Dim dtf As DataTable = BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, SICFunctionName,
Nothing, GatewayName, String.Empty).ResultSet
Dim xfDT As XFDataTable = new XFDataTable(si, dtf, Nothing, 1000)
drillBackInfo.DataTable = xfDT
drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.DataGrid
Return drillBackInfo

Here is a C# drill-back example that invokes a remote business rule accepting 2

parameters:

// ExecRemoteGatewayBusinessRule Drillback example
var GatewayName = ""; // Name of the Gateway
var SICFunctionName = ""; // Name of the SIC Function to run
var RemoteMethodName = ""; // Name of the method inside the SIC Function that will be
called.

Smart Integration Connector Guide 123

Business Rules

var drillBackInfo = new DrillBackResultInfo();
object[] argTest = new object[2]; // Creating an object array to package the method
parameters
argTest[0] = 12; // First parameter is an integer
argTest[1] = "test"; // Second parameter is a string

// Remote Smart Integration Function Signature: ' Public Shared Function RunOperation2
(testval As Integer, teststr As String) As ArrayList
// Invoking method RunOperation2 on endpoint testConnection passing in user defined
parameters as an array

var objRemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayBusinessRule(si,
SICFunctionName, argTest, GatewayName, RemoteMethodName);

if (objRemoteRequestResultDto.RemoteResultStatus ==
RemoteMessageResultType.RunOperationReturnObject)
{
var returnVal = objRemoteRequestResultDto.ObjectResultValue as ArrayList;
// Simple demonstration without error checking to look at the first element of the

arraylist
 drillBackInfo.TextMessage = "Completed! " + returnVal[0].ToString();
 drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.TextMessage;
return drillBackInfo;

}
else if (objRemoteRequestResultDto.RemoteResultStatus == RemoteMessageResultType.Success)
{
// Demonstrating a 'pattern' whereby the caller can verify what the type is that's

returned and handle properly.
var xfDT = new XFDataTable(si, objRemoteRequestResultDto.ResultSet, null, 1000);

 drillBackInfo.DataTable = xfDT;
 drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.DataGrid;
return drillBackInfo;

}
else if (!(objRemoteRequestResultDto.RemoteException is null))
{
throw ErrorHandler.LogWrite(si, new XFException(si,

objRemoteRequestResultDto.RemoteException));
}

Here is a VB.NET drill-back example that invokes a remote business rule accepting 2

parameters:

' ExecRemoteGatewayBusinessRule Drillback example
Dim GatewayName As String = "" ' Name of the Gateway
Dim SICFunctionName As String = "" ' Name of the SIC Function to run
Dim RemoteMethodName As String = "" ' Name of the method inside the SIC Function that
will be called.
Dim drillBackInfo As New DrillBackResultInfo
Dim argTest(1) As Object ' Creating an object array to package the method parameters

Smart Integration Connector Guide 124

Business Rules

argTest(0) = 12 ' First parameter is an integer
argTest(1) = "test" ' Second parameter is a string

' Remote Smart Integration Function Signature: ' Public Shared Function RunOperation2
(testval As Integer, teststr As String) As ArrayList

' Invoking method RunOperation2 on endpoint testConnection passing in user defined
parameters as an array

Dim objRemoteRequestResultDto As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, SICFunctionName, argTest, GatewayName,
RemoteMethodName)

If (objRemoteRequestResultDto.RemoteResultStatus =
RemoteMessageResultType.RunOperationReturnObject) Then
Dim returnVal As ArrayList = objRemoteRequestResultDto.ObjectResultValue
'Simple demonstration without error checking to look at the first element of the

arraylist
 drillBackInfo.TextMessage = "Completed! " & returnVal(0).ToString()
 drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.TextMessage
Return drillBackInfo

Else If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.Success)
' Demonstrating a 'pattern' whereby the caller can verify what the type is that's

returned and handle properly.
Dim xfDT = New XFDataTable(si, objRemoteRequestResultDto.ResultSet, Nothing, 1000)

 drillBackInfo.DataTable = xfDT
 drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.DataGrid
Return drillBackInfo

Else If (Not (objRemoteRequestResultDto.remoteException Is Nothing))
Throw ErrorHandler.LogWrite(si, New XFException(si,

objRemoteRequestResultDto.RemoteException))
End If

Below is a TestFileRead Remote Business Rule function in C# Referenced by Examples

Below.

Here it is in C#:

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Common;
using System.Globalization;
using System.IO;
using System.Linq;

namespace OneStream.BusinessRule.SmartIntegrationFunction.TestFileRead
{

Smart Integration Connector Guide 125

Business Rules

public class MainClass
{
public byte[] RunOperation(string year)
{
string fname = @"c:\temp\hw_" + year + ".csv";
byte[] buffer = System.IO.File.ReadAllBytes(fname);
return buffer;

 }

public byte[] GetOtherFileData(string year)
{
string fname = @"c:\temp\zw_" + year + ".csv";
byte[] buffer = System.IO.File.ReadAllBytes(fname);
return buffer;

 }

public bool DeleteOldFileData(string year)
{
string fname = @"c:\temp\zw_" + year + ".csv";
try
{

 System.IO.File.Delete(fname);
return true;

 }
catch (IOException ex)
{
return false;

 }
 }
 }
}

Here it is in VB:

Imports System
Imports System.Collections.Generic
Imports System.Data
Imports System.Data.Common
Imports System.Globalization
Imports System.IO
Imports System.Linq

Namespace OneStream.BusinessRule.SmartIntegrationFunction.TestFileRead
Public Class MainClass
Public Function RunOperation(ByVal year As String) As Byte()
Dim fname As String = "c:\temp\hw_" & year & ".csv"
Dim buffer As Byte() = System.IO.File.ReadAllBytes(fname)
Return buffer
End Function

Smart Integration Connector Guide 126

Business Rules

Public Function GetOtherFileData(ByVal year As String) As Byte()
Dim fname As String = "c:\temp\zw_" & year & ".csv"
Dim buffer As Byte() = System.IO.File.ReadAllBytes(fname)
Return buffer
End Function

Public Function DeleteOldFileData(ByVal year As String) As Boolean
Dim fname As String = "c:\temp\zw_" & year & ".csv"

Try
 System.IO.File.Delete(fname)
Return True
Catch ex As IOException
Return False
End Try
End Function
End Class

End Namespace

Below is a remote business rule that queries a database and returns a datatable.

Here is the rule in C#:

// SIC Function referenced by other examples here
namespace OneStream.BusinessRule.SmartIntegrationFunction.GetDataFromDB
{
public class MainClass
{
private const string DataSourceName = "";
public DataTable RunOperation()
{

 DataTable dataTableResults = new DataTable();
string connectionString, sql;

 connectionString = OneStreamGatewayService.APILibrary.GetRemoteDataSourceConnection
(DataSourceName);

 SqlConnection conn;
 conn = new SqlConnection(connectionStringconn.Open());
 sql = ""; // Enter SQL Query here
 SqlCommand cmd = new SqlCommand(sql, conn);
var dbreader = cmd.ExecuteReader();

 dataTableResults.Load(dbreader);
return dataTableResults;

 }
 }
}

Smart Integration Connector Guide 127

Business Rules

Here is the rule in VB:

' SIC Function referenced by other examples here
Namespace OneStream.BusinessRule.SmartIntegrationFunction.GetDataFromDB
Public Class MainClass
Private Const DataSourceName As String = ""

Public Function RunOperation() As DataTable
Dim dataTableResults As DataTable = New DataTable()
Dim connectionString, sql As String

 connectionString = APILibrary.GetRemoteDataSourceConnection(DataSourceName)
Dim conn As SqlConnection

 conn = New SqlConnection(connectionStringconn.Open())
 sql = "" ' Enter SQL Query here
Dim cmd As SqlCommand = New SqlCommand(sql, conn)
Dim dbreader = cmd.ExecuteReader()

 dataTableResults.Load(dbreader)
Return dataTableResults
End Function
End Class

End Namespace

Here is an example of calling a TestFileRead remote business rule in C#.

// Here we are telling it to specifically call a remote Smart Integration Function called
TestFileRead at SIC Gateway
// called TestConnection with a method called DeleteOldFileData
var GatewayName = ""; // Name of the Gateway
var SICFunctionName = "TestFileRead"; // Name of the SIC Function from above example
var RemoteMethodName = "DeleteOldFileData"; // Name of the method inside the SIC Function
that will be called.
RemoteRequestResultDto objRemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, SICFunctionName, new object[] {"2024"},
GatewayName, RemoteMethodName);

if (objRemoteRequestResultDto.RemoteResultStatus ==
RemoteMessageResultType.RunOperationReturnObject && !
(objRemoteRequestResultDto.ObjectResultValue is null))
{
bool result;
if (bool.TryParse(objRemoteRequestResultDto.ObjectResultValue.ToString(), out result))
{

 BRApi.ErrorLog.LogMessage(si, "File Deleted: " + result.ToString());
 }
else
{

 BRApi.ErrorLog.LogMessage(si, "Returned a non-boolean value");
 }
}

Smart Integration Connector Guide 128

Business Rules

else
{
if (objRemoteRequestResultDto.RemoteException != null)
{
throw ErrorHandler.LogWrite(si, new XFException(si,

objRemoteRequestResultDto.RemoteException));
 }

}

return null;

Here is an example of calling a TestFileRead remote business rule in VB.NET.

'Here we are telling it to specifically call a remote Smart Integration Function called
TestFileRead at SIC Gateway
'called TestConnection with a method called DeleteOldFileData
Dim GatewayName As String = "" ' Name of the Gateway
Dim SICFunctionName As String = "TestFileRead" ' Name of the SIC Function from above
example
Dim RemoteMethodName As String = "DeleteOldFileData" ' Name of the method inside the SIC
Function that will be called.
Dim argTest(0) As Object ' Creating an object array to package the method parameters
argTest(0) = "2024" ' First parameter is an integer

Dim objRemoteRequestResultDto As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, SICFunctionName, argTest, GatewayName,
RemoteMethodName)
If (objRemoteRequestResultDto.RemoteResultStatus =
RemoteMessageResultType.RunOperationReturnObject) Then
'The delete method returns a true/false return type
Dim result As Boolean
'ObjectResultValue introduced in v7.4 to simplify obtaining the return
'value from a method that doesn't return a Dataset/Datatable

 result = objRemoteRequestResultDto.ObjectResultValue
 BRApi.ErrorLog.LogMessage(si, "File Deleted: " & result)
Else
If (Not (objRemoteRequestResultDto.remoteException Is Nothing)) Then
Throw ErrorHandler.LogWrite(si, New XFException(si,

objRemoteRequestResultDto.remoteException))
End If

End if

Here's an example to call the remote BR called "GetDataFromDB" (C#):

// Here we are telling it to specifically call a remote Smart Integration Function called
GetDataFromDB at SIC Gateway called TestConnection with a method called RunOperation

Smart Integration Connector Guide 129

Business Rules

var GatewayName = ""; // Name of the Gateway
var SICFunctionName = "GetDataFromDB"; // Name of the SIC Function from above example
var RemoteMethodName = "RunOperation"; // Name of the method inside the SIC Function that
will be called.
var objRemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayBusinessRule(si,
SICFunctionName, null, GatewayName, RemoteMethodName);

if (objRemoteRequestResultDto.RemoteResultStatus == RemoteMessageResultType.Success
 && objRemoteRequestResultDto.ResultSet != null
 && objRemoteRequestResultDto.ResultType == RemoteResultType.DataTable)
{
 BRApi.ErrorLog.LogMessage(si, "Data Returned - Rows:" +
objRemoteRequestResultDto.ResultSet.Rows.Count);
}
else
{
if (objRemoteRequestResultDto.RemoteException != null)
{
throw ErrorHandler.LogWrite(si, new XFException(si,

objRemoteRequestResultDto.RemoteException));
 }
else
{

 BRApi.ErrorLog.LogMessage(si, "Remote Smart Integration Function Succeeded - no
data/datatable returned");
 }
}

Here's an example to call the remote BR called "GetDataFromDB" (VB):

' Here we are telling it to specifically call a remote Smart Integration Function called
GetDataFromDB at SIC Gateway called TestConnection with a method called RunOperation
Dim GatewayName As String = "" ' Name of the Gateway
Dim SICFunctionName As String = "GetDataFromDB" ' Name of the SIC Function from above
example
Dim RemoteMethodName As String = "RunOperation" ' Name of the method inside the SIC
Function that will be called.
Dim objRemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayBusinessRule(si,
SICFunctionName, Nothing, GatewayName, RemoteMethodName)

If objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.Success AndAlso
objRemoteRequestResultDto.ResultSet IsNot Nothing AndAlso
objRemoteRequestResultDto.ResultType = RemoteResultType.DataTable Then
 BRApi.ErrorLog.LogMessage(si, "Data Returned - Rows:" &
objRemoteRequestResultDto.ResultSet.Rows.Count)
Else
If objRemoteRequestResultDto.RemoteException IsNot Nothing Then
Throw ErrorHandler.LogWrite(si, New XFException(si,

objRemoteRequestResultDto.RemoteException))
Else

Smart Integration Connector Guide 130

Business Rules

 BRApi.ErrorLog.LogMessage(si, "Remote Smart Integration Function Succeeded - no
data/datatable returned")
End If

End If

GetRemoteDataSourceConnection

This remote business rule will return the connection string associated with a Local

Gateway Configuration Data Source.

NOTE: Requires allowRemoteCodeExec = True on Smart Integration Local

Gateway.

Parameter details:

l Data Source: The name of the Local Gateway Configuration Data Source.

Here is the rule in C#:

// SIC Function to get configured connection string from SIC Gateway
namespace OneStream.BusinessRule.SmartIntegrationFunction.GetRemoteDataSourceSample
{
public class MainClass
{
public DataTable RunOperation()
{

 DataTable dataTableResults = new DataTable();
// Get the remotely defined connection string

string connectionString =
OneStreamGatewayService.APILibrary.GetRemoteDataSourceConnection(""); // enter name of DB
Connection
 SqlConnection conn = new SqlConnection(connectionString);

// Insert custom code
return dataTableResults;

 }
 }
}

Here is the rule in VB.NET:

Smart Integration Connector Guide 131

Business Rules

' SIC Function to get configured connection string from SIC Gateway
Namespace OneStream.BusinessRule.SmartIntegrationFunction.GetRemoteDataSource_VB
Public Class MainClass
Public Shared Function RunOperation() As DataTable
Dim dataTableResults As New DataTable
' Get the remotely defined connection String
Dim connectionString As String =

OneStreamGatewayService.APILibrary.GetRemoteDataSourceConnection("") ' enter name of DB
Connection
Dim conn As SqlConnection = New SqlConnection(connectionString)
' Insert custom code

Return dataTableResults
End Function
End Class

End Namespace

GetRemoteGatewayJobStatus

This BR API returns the status or the results of a previously remotely queued job invoked

against a specified Smart Integration Connector Local Gateway host.

NOTE: Requires allowRemoteCodeExec = true on Smart Integration Service.

Parameter details:

l si: SessionInfo object used to create connection objects

l JobID: GUID of remote job ID returned upon successful call to

ExecRemoteGatewayJob

l remoteHost: Name of remote host to invoke operation (Smart Integration

Connector Name)

The sample below invokes a job as part of a data management job inside a OneStream

extender rule. The example demonstrates a simple Smart Integration Function that

sleeps 2 seconds 1000 times in a loop simulating a long running task. The corresponding

Smart Integration Connector Guide 132

Business Rules

extender rule illustrates how this long running function can be invoked as a job, returning

a job ID and subsequently polled until it's completed.

It would be typical to invoke long running jobs as part of a Data management/Extender

Rule and the code below is an example on how this could be accomplished in C#:

[6:53 PM] Connor Shields
// Invoke long running job as part of a Data management/Extender rule
public object Main(SessionInfo si, BRGlobals globals, object api, ExtenderArgs args)
{
 Guid jobID;
 RemoteRequestResultDto objRemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayJob
(si, "LongRunningTest", null/* TODO Change to default(_) if this is not a reference type
*/, "testConnection", string.Empty);

if ((objRemoteRequestResultDto.RemoteResultStatus ==
RemoteMessageResultType.JobRunning))
{

 jobID = objRemoteRequestResultDto.RequestJobID;
 BRApi.ErrorLog.LogMessage(si, "Remote Job Queued and Running - JobID: " + jobID.ToString
());

for (var loopControl = 0; loopControl <= 10; loopControl++)
{

 System.Threading.Thread.Sleep(2000);
 RemoteJobStatusResultDto objJobStatus = BRApi.Utilities.GetRemoteGatewayJobStatus(si,
jobID, "testconnection2");
if ((objJobStatus.RemoteJobState == RemoteJobState.Running))

 BRApi.ErrorLog.LogMessage(si, "Remote Job Still running - JobID: " + jobID.ToString());
else if ((objJobStatus.RemoteJobState == RemoteJobState.Completed)

)
{
// Checking the return type from the remote job
if (!(objJobStatus.RemoteJobResult.ResultSet == null))
{
var xfDT = new XFDataTable(si, objJobStatus.RemoteJobResult.ResultSet, null, 1000);

 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Datatable Returned - JobID: " +
jobID.ToString());
return null;

 }
else if (!(objJobStatus.RemoteJobResult.ResultDataSet == null))
{
var xfDT = new XFDataTable(si, objJobStatus.RemoteJobResult.ResultDataSet.Tables[0],

null, 1000);
 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Dataset Returned - JobID: " +
jobID.ToString());
 }
else if (!(objJobStatus.RemoteJobResult.ObjectResultValue == null))
{

 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Object Returned - JobID: " +

Smart Integration Connector Guide 133

Business Rules

jobID.ToString());
return null;

 }
 }
else if ((objJobStatus.RemoteJobState == RemoteJobState.JobNotFound))
{

 BRApi.ErrorLog.LogMessage(si, "Remote Job Not Found - JobID: " + jobID.ToString());
return null;

 }
else if ((objJobStatus.RemoteJobState == RemoteJobState.RequestTimeOut))
{

 BRApi.ErrorLog.LogMessage(si, "Remote Job Timed Out - JobID: " + jobID.ToString());
return null;

 }
else if ((objRemoteRequestResultDto.RemoteResultStatus ==

RemoteMessageResultType.Exception))
 BRApi.ErrorLog.LogMessage(si, "Exception During Exeuction of Job: " +
objRemoteRequestResultDto.RemoteException.ToString());
 }
 }
else if ((objRemoteRequestResultDto.RemoteResultStatus ==

RemoteMessageResultType.Exception))
 BRApi.ErrorLog.LogMessage(si, "Exception Executing Job: " +
objRemoteRequestResultDto.RemoteException.ToString());
else

 BRApi.ErrorLog.LogMessage(si, "General Job Execution Error - State: " +
objRemoteRequestResultDto.RemoteResultStatus.ToString());
return null;

}

Here is the example in VB:

' Invoke long running job as part of a Data management/Extender rule
Public Function Main(ByVal si As SessionInfo, ByVal globals As BRGlobals, ByVal api
As Object, ByVal args As ExtenderArgs) As Object
Dim jobID As Guid
Dim objRemoteRequestResultDto As RemoteRequestResultDto =

BRApi.Utilities.ExecRemoteGatewayJob(si, "LongRunningTest", Nothing,
"testConnection",String.Empty)

If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.JobRunning)
Then
 jobID = objRemoteRequestResultDto.RequestJobID
 BRApi.ErrorLog.LogMessage(si, "Remote Job Queued and Running - JobID: " & jobID.ToString
())
'Example waiting 20 seconds for job to complete
For loopControl = 0 To 10

 System.Threading.Thread.Sleep(2000)
Dim objJobStatus As RemoteJobStatusResultDto = BRApi.Utilities.GetRemoteGatewayJobStatus

Smart Integration Connector Guide 134

Business Rules

(si, JobID, "testconnection2")
If (objJobStatus.RemoteJobState = RemoteJobState.Running)

 BRApi.ErrorLog.LogMessage(si, "Remote Job Still running - JobID: " & jobID.ToString())
Else If (objJobStatus.RemoteJobState = RemoteJobState.Completed)
' Checking the return type from the remote job
If (Not objJobStatus.RemoteJobResult.ResultSet Is Nothing) Then
Dim xfDT = New XFDataTable(si,objJobStatus.RemoteJobResult.ResultSet,Nothing,1000)

 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Datatable Returned - JobID: " &
jobID.ToString())
Return Nothing
Else If (Not objJobStatus.RemoteJobResult.ResultDataSet Is Nothing) Then
Dim xfDT = New XFDataTable(si,objJobStatus.RemoteJobResult.ResultDataSet.Tables

(0),Nothing,1000)
 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Dataset Returned - JobID: " &
jobID.ToString())
Return Nothing
Else If (Not objJobStatus.RemoteJobResult.ObjectResultValue Is Nothing) Then

 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Object Returned - JobID: " &
jobID.ToString())
Return Nothing
End If
Else If (objJobStatus.RemoteJobState = RemoteJobState.JobNotFound)

 BRApi.ErrorLog.LogMessage(si, "Remote Job Not Found - JobID: " & jobID.ToString())
Return Nothing
Else If (objJobStatus.RemoteJobState = RemoteJobState.RequestTimeOut)

 BRApi.ErrorLog.LogMessage(si, "Remote Job Timed Out - JobID: " & jobID.ToString())
Return Nothing
Else If (objRemoteRequestResultDto.RemoteResultStatus =

RemoteMessageResultType.Exception)
 BRApi.ErrorLog.LogMessage(si, "Exception During Exeuction of Job: " &
objRemoteRequestResultDto.RemoteException.ToString())
End If
Next
Else ' Exception occuring immediately during compile/initial run
If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.Exception)

 BRApi.ErrorLog.LogMessage(si, "Exception Executing Job: " &
objRemoteRequestResultDto.RemoteException.ToString())
Else

 BRApi.ErrorLog.LogMessage(si, "General Job Execution Error - State: " &
objRemoteRequestResultDto.RemoteResultStatus.ToString())
End If
End If
Return Nothing

End Function

Smart Integration Connector Guide 135

Business Rules

GetSmartIntegrationConfigValue

This BR API allows access to the Local Gateway Local Application Data Settings.

Accessing the remotely stored secret or customer-defined configuration values is done

using a new "Remote" equivalent of the BR API namespace. This feature can be used to:

l Reference configuration parameters in a remote business rule running on a Smart

Integration Connector Local Gateway Server

l Store credentials to network resources allowing the developer of remote business

rules to reference values stored in the configuration file instead of having them

hard-coded and viewable by anyone with permission to edit a business rule.

These configuration values are defined and edited using the Smart Integration

Connector Local Gateway Configuration Utility. The API used to obtain these values is

demonstrated in the full business rule example below:

NOTE: Requires allowRemoteCodeExec = True on Smart Integration Local

Gateway.

Here is the rule in C#:

// SIC Function demonstrating GetSmartIntegrationConfigValue
namespace TestProject.OneStream.BusinessRule.SmartIntegrationFunction.SecretTester
{
public class MainClass
{
public static @bool RunOperation()
{
string result;
// APILibrary is the class containing new remote BRAPI methods
// GetSmartIntegrationConfigValue returns the string value of a found configuration
// element -- returns empty string if the specified key is not found

 result = APILibrary.GetSmartIntegrationConfigValue(""); //Enter config value name
return true;

 }
 }

Smart Integration Connector Guide 136

Business Rules

}

Here is another example in VB.NET:

' SIC Function demonstrating GetSmartIntegrationConfigValue

Namespace OneStream.BusinessRule.SmartIntegrationFunction.SecretTester

Public Class MainClass
Public Shared Function RunOperation() as bool
Dim result As String
' APILibrary is the class containing new remote BRAPI methods
' GetSmartIntegrationConfigValue returns the string value of a found configuration
' element -- returns empty string if the specified key is not found

 result = APILibrary.GetSmartIntegrationConfigValue("") ' Enter config value name
Return True
End Function
End Class

End NameSpace

GetGatewayConnectionInfo

From a OneStream business rule, you can invoke this API to obtain gateway details such

as:

l GatewayName: Name of the remote gateway

l GatewayVersion: Version of the Smart Integration Connector Gateway Service

running on the remote host

l RemoteGatewayPortNumber: Bound Port at Gateway, the port of the remote

service this direct connection is associated with.

l RemoteGatewayHost: Name of the remote host associated with the direct

connection.

Smart Integration Connector Guide 137

Business Rules

l OneStreamPortNumber: Bound Port in OneStream, the port number defined within

OneStream that refers/maps to the specified direct connection.

l SmartIntegrationGatewayType: Type of the Smart Integration Connection

(0=Database Connection, 1=Direct Connection)

This API is useful for direct connections where the port number is required before

connecting to remote services such as sFTP or remote Web APIs because each

endpoint defined in OneStream to Smart Integration Connector Local Gateways has a

different port number and would need to be known by the business rule developer at

design time. This API makes it easy to look up the remote port by knowing the name of

the direct connection defined in OneStream. It returns other useful information outlined

below:

Here is the rule in C#:

// GetGatewayConnectionInfo
var GatewayName = "" //Name of the Gateway
GatewayDetails gatewayDetailInformation = BRApi.Utilities.GetGatewayConnectionInfo(si,
GatewayName);
int oneStreamPortNumber = gatewayDetailInformation.OneStreamPortNumber;

Here is the rule in VB:

' GetGatewayConnectionInfo
Dim GatewayName As String = "" ' Name of the Gateway
Dim objGatewayDetails As GatewayDetails = BRApi.Utilities.GetGatewayConnectionInfo(si,
GatewayName)
Dim oneStreamPortNumber As Integer = objGatewayDetails.OneStreamPortNumber

Check OneStream Version

Remote business rules have the ability to provide logic based on the OneStream Version.

Here is the example rule in C#:

Smart Integration Connector Guide 138

Business Rules

namespace OneStream.BusinessRule.SmartIntegrationFunction.version_test_csharp
{

public class MainClass
{

public string RunOperation()
{

#if ONESTREAM8_4_0_OR_GREATER
// Code if true

#else
// Code if false

#endif
 }
 }
}

Here is the example rule in VB:

Namespace OneStream.BusinessRule.SmartIntegrationFunction.version_test_vb
Public Class MainClass

Public Shared Function RunOperation() As String
#If ONESTREAM8_4_0_OR_GREATER

' Code if true
#Else

' Code if false
#End If

End Function
End Class

End Namespace

BRApi.Utilities.IsGatewayOnline

The following business rule can check the status of Smart Integration Connector. You will

need to replace "gateway-name" with the name of the gateway to be tested.

Here is the rule in C#:

// IsGatewayOnline

namespace OneStream.BusinessRule.Extender.TestHealthCheck
{
public class MainClass

Smart Integration Connector Guide 139

Business Rules

{
public const string GatewayName = "";

public object Main(SessionInfo si, BRGlobals globals, object api, ExtenderArgs args)
{
try
{
TestGatewayConnection(si, GatewayName);
return null;

 }
catch (Exception ex)
{
throw ErrorHandler.LogWrite(si, new XFException(si, ex));

 }
 }

public void TestGatewayConnection(SessionInfo si, string gwName)
{
bool response = BRApi.Utilities.IsGatewayOnline(gwName);

if (response)
{

 BRApi.ErrorLog.LogMessage(si, $"Health Check Successful for {gwName}");
 }
else
{

 BRApi.ErrorLog.LogMessage(si, $"Health Check Failed for {gwName}");
 }
 }
 }
}

Here is the rule in VB:

Namespace OneStream.BusinessRule.Extender.TestHealthCheck
Public Class MainClass
Public Const GatewayName As String = ""

Public Function Main(ByVal si As SessionInfo, ByVal globals As BRGlobals, ByVal api
As Object, ByVal args As ExtenderArgs) As Object
Try

 TestGatewayConnection(si, GatewayName)
Return Nothing
Catch ex As Exception
Throw ErrorHandler.LogWrite(si, New XFException(si, ex))
End Try
End Function

Public Sub TestGatewayConnection(ByVal si As SessionInfo, ByVal gwName As String)

Smart Integration Connector Guide 140

Business Rules

Dim response As Boolean = BRApi.Utilities.IsGatewayOnline(gwName)

If response Then
 BRApi.ErrorLog.LogMessage(si, $"Health Check Successful for {gwName}")
Else

 BRApi.ErrorLog.LogMessage(si, $"Health Check Failed for {gwName}")
End If
End Sub
End Class

End Namespace

Smart Integration Connector Guide 141

Business Rules

Business Rules Compatibility

There are some business rules that are not compatible with Smart Integration Connector.

If you attempt certain rules, you will run into the following error: This BR API is not

compatible with Smart Integration Connector. Refer to Smart Integration Connector

Remote BRs.

The following business rules are not compatible with Smart Integration Connector:

BRApi.Database.SaveCustomDataTable

Although, this business rule is not supported, the functionality can be achieved through a

remote business rule. You can call this business rule using

BRApi.Utilities.ExecRemoteGatewayBusinessRule.

Here is the rule in C#:

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.SqlClient;
using System.Data.Common;
using System.Globalization;
using System.IO;
using System.Linq;

namespace OneStream.BusinessRule.SmartIntegrationFunction.SaveCustomDataTable
{

public class MainClass
{

public void RunOperation()
{

var tableName = ""; // Enter the name of the table to update
var connectionName = ""; // Enter the name of the configured database

connection
var connString =

OneStreamGatewayService.APILibrary.GetRemoteDataSourceConnection(connectionName);
var dataTable = new DataTable();
using (var connection = new SqlConnection(connString))

Smart Integration Connector Guide 142

Business Rules Compatibility

{
 connection.Open();

var sql = $"SELECT * FROM {tableName}";
var cmd = new SqlCommand(sql, connection);
var adapter = new SqlDataAdapter();

 adapter.SelectCommand = cmd;
var commandBuilder = new SqlCommandBuilder(adapter);

 adapter.Fill(dataTable);
// Add logic here to update values in DataTable
// Update database with changes to the DataTable

 adapter.UpdateCommand = commandBuilder.GetUpdateCommand();
 adapter.Update(dataTable);
 }
 }
 }
}

Here is the same rule VB:

Imports System
Imports System.Collections.Generic
Imports System.Data
Imports System.Data.Common
Imports System.Globalization
Imports System.IO
Imports System.Linq
Namespace OneStream.BusinessRule.SmartIntegrationFunction.SaveCustomDataTableVB

Public Class MainClass
Public Sub RunOperation()
Dim tableName = "" ' Enter the name of the table to update
Dim connectionName = "" ' Enter the name of the configured database

connection
Dim connString =

OneStreamGatewayService.APILibrary.GetRemoteDataSourceConnection(connectionName)
Dim dataTable = New DataTable()
Using connection = New SqlConnection(connString)

 connection.Open()
Dim sql = $"SELECT * FROM {tableName}"
Dim cmd = New SqlCommand(sql, connection)
Dim adapter = New SqlDataAdapter()

 adapter.SelectCommand = cmd
Dim commandBuilder = New SqlCommandBuilder(adapter)

 adapter.Fill(dataTable)
' Add logic here to update values in DataTable
' Update database with changes to the DataTable

 adapter.UpdateCommand = commandBuilder.GetUpdateCommand()
 adapter.Update(dataTable)

End Using
End Sub

End Class

Smart Integration Connector Guide 143

Business Rules Compatibility

End Namespace

BRApi.Database.InsertOrUpdateRow

BRApi.Database.DeleteRows

Although, these business rules are not supported, inserting, deleting and updating rows

can be accomplished through the same remote business rule referenced above. You can

call this business rule using BRApi.Utilities.ExecRemoteGatewayBusinessRule. You will

insert your logic at the specific comment in the remote business rule.

SQL Bulk Copy

Use of the SQL Bulk Copy class is not supported to copy to and from databases

accessed over Smart Integration Connector. Currently, there is not a workaround

available.

SQL Transactions

Use of the SqlTransaction class is currently only supported in Smart Integration

Connector Functions / remote business rules.

Smart Integration Connector Guide 144

Business Rules Compatibility

Limitations

This section details a list of known limitations in Smart Integration Connector.

Parquet Format Transfer

Smart Integration Connector transfers data in Apache Parquet format from the Local

Gateway Service to your OneStream cloud instance. If you are transferring a data type

that is unsupported by parquet, the data returns as a string. See Troubleshooting.

Load Balanced Local Gateway Servers

Load balanced Local Gateway Servers do not support queries over 1 million rows or the

use of Smart Integration Connector Functions that query for long running jobs. The

support for these use cases will be included in a future release of Smart Integration

Connector.

Returning Multiple DataTables with Remote

Business Rules

If you are returning multiple DataTables in a DataSet from a Remote Business Rule, the

maximum number of combined rows and size are around 2 million rows and 2GB of data.

Custom Email Connections

Email over Smart Integration Custom ("Notification Connection" in Data Management

jobs) Connections is not supported. Remote BRs do support email in Smart Integration

Smart Integration Connector Guide 145

Limitations

Connector.

FTP Transfers

sFTP is supported by the use of SSH.NET. FTP is currently not supported for SSH.NET.

Use sFTP for all file transfers.

SQL Table Editor

If you plan on modifying data with SQL Table Editor using Smart Integration Connector,

then you will need to write back data with a custom business rule using the Execute

Dashboard Extender Business Rule feature under the Save Data Server Task jaction.

Precision using Decimals

Smart Integration Connector queries can only return numeric values with up to 38 total

digits: 20 integer digits to left of the decimal point and 18 fractional digits to the right of

the decimal point.

For example, returning a column with a value of 123456789123456789123 (21 digits) is not

supported. Even though there is no decimal point, it still exceeds 20 integer digits, which

is the maximum amount.

Similarly, returning a column with a value of 0.1234567891234567891 (19 decimal digits) is

not supported, as it contains more than 18 digits on the right side of the decimal point.

Smart Integration Connector Guide 146

Limitations

If your queries can return values that require more than 20 integer digits or 18 fractional

digits, consider casting to a VARCHAR as the following:

l "SELECT CAST(123456789123456789123 AS VARCHAR)" -- 21 integer digits

If there is no risk of overflowing the opposite side of the decimal point, you can also divide

by a factor of 10 to shift right or multiply by a factor of 10 to shift left. This approach is

more efficient than casting to a VARCHAR

For example:

l SELECT 123456789123456789123 / 100 -- 21 integer digits will shift by two digits to

the right

l SELECT 0.1234567891234567890 * 100 -- 19 fractional digits will shift by two digits

to the left

Smart Integration Connector Guide 147

Limitations

Troubleshooting

This section provides help on addressing errors in Smart Integration Connector.

Gateway Testing Issue Resolution

If your connection testing is failing, refer to the steps below to fully test the connection.

1. You can test the gateway by double-clicking theOneStreamGatewayService.exe

file located in the installation folder.

NOTE: The Smart Integration Connector Gateway Windows Service

must be in a stopped state to run in the console for test purposes.

The following command window is displayed:

2. Correct any errors that are displayed in the command window.

Smart Integration Connector Guide 148

Troubleshooting

NOTE: If the command window output does not proceed beyond the

"APIServiceHostController Start Relay API startup successful." line, this

indicates that the outbound traffic over port 443 to the Azure Relay is

blocked. Open the port to resolve this issue.

3. In the OneStream Windows Application client, refresh Gateway Details from

System > Administration > SmartIntegration Connector > Your gateway.

l The Instance Count changes from 0 to 1.

l The Status changes from Offline to Online. Additionally, status indicators

turn green on the side menu if the Gateway is Online, red if the Gateway is

Offline, and yellow if the Gateway is Offline but there is a newer version of

the Local Gateway Server available. See the second screenshot under this

step for a close-up of the indicators.

l The Version field shows the version of the running Smart Integration

Connector Gateway.

Smart Integration Connector Guide 149

Troubleshooting

4. Press Enter twice on the keyboard to stop the service in the command window and

then close the command window.

Error Log

To view the error log, click System > Logging > Error Log.

Every minute, by default, the Smart Integration Connector tries to connect to an

established Smart Integration Connector local gateway from each application server

used in a deployment. If the gateway is unable to connect, it adds an error to the error log

based on the Gateway failures reporting interval (min). These errors are recorded in

the OneStream error log along with other errors related to the OneStream application.

You can configure the interval at which OneStream application servers log this gateway

Smart Integration Connector Guide 150

Troubleshooting

failure from 1 minute to 1440 minutes (1 day) to reduce the volume of logged failures for

infrequently online test or validation environments.

NOTE: It is recommended to increase the time intervals for queries that run

longer than five minutes. For example, if you have a query that runs ten

minutes long, you need to set your time interval to above ten minutes (such

as fifteen minutes). Time intervals can be adjusted from System > Smart

Integration Connector > Your connection > Gateway failures reporting

interval (min).

Common Errors

Memory Issues

If you receive any of the following errors, increase the memory in your Smart Integration

Connector Local Gateway Server. For queries returning over 1 million records, 32 GB or

more RAM is recommended.

l "Error while copying content to a stream. Received an unexpected EOF or 0 bytes

from the transport stream."

l "An error occurred while sending the request. The response ended prematurely."

Smart Integration Connector Guide 151

Troubleshooting

Gateway Version is Empty

If your gateway is reporting online, is of type "Database Connection" and the Version is

empty, verify with your IT Admin that port 443 is fully open outbound between the Smart

Integration Connector Local Gateway Server and the Azure Relay and that Deep Packet

Inspection or SSL Teardown is not being performed.

Refer to Knowledge Base article KB0013213 for additional information.

Custom Data Source Names

You may not see the Data Source Names populate when setting up the custom

connection with a new gateway. It is recommended to wait for five minutes from creating

a new gateway to when you create the custom connection.

Smart Integration Connector Guide 152

Troubleshooting

Array cannot be null Error

You receive the error: "Array cannot be null. (Parameter 'bytes')" or

"System.AggregateException - System.NullReferenceException: Object reference not

set to instance of object"

NOTE: CompressionHelper.InflateJsonObject is now automatically

executed as part of remote calls resulting in serialized .NET types returned

from the Smart Integration Connector Gateway. Update any Smart

Integration Connector related business rules accordingly.

Previously, it was required that a OneStream BR developer invoking a

remote Smart Integration Function be aware of the data type returned and

convert accordingly after the result is returned. An example where the

returned result was a byte array involved code that appeared as follows:

Example:

bytesFromFile = CompressionHelper.InflateJsonObject(Of System.Byte())
(si,objRemoteRequestResultDto.resultDataCompressed)
' The Smart Integration Connector Gateway now provides this type information back to
OneStream
' and streamlines this conversion process using a newly added property called
' ObjectResultValue which is populated.
' When invoking the same operation shown above that previously required
' the type to be converted, a BR developer can do the following:
bytesFromFile = objRemoteRequestResultDto.ObjectResultValue

Smart Integration Connector Guide 153

Troubleshooting

Opening and Saving Configuration Errors

You may receive an error opening or saving your OneStream Local Gateway

Configuration after installing Oracle Data Provider for .NET.

You must comment out the following line <!--<add name="Oracle Data Provider for .NET"

invariant="Oracle.DataAccess.Client" description=".Net Framework Data Provider for

Oracle" type="Oracle.DataAccess.Client.OracleClientFactory, Oracle.DataAccess" />-->

when editing your OneStreamLocalGatewayConfiguration.exe.config to resolve this

error.

Your configuration should look similar to this:

<DbProviderFactories>
<add name="Npgsql Data Provider" invariant="Npgsql" description="Data Provider for

PostgreSQL" type="Npgsql.NpgsqlFactory, Npgsql" />
<add name="MySQL Data Provider" invariant="MySql.Data.MySqlClient" description=".Net

Framework Data Provider for MySQL" type="MySql.Data.MySqlClient.MySqlClientFactory,
MySql.Data" />
<!--<add name="Oracle Data Provider for .NET" invariant="Oracle.DataAccess.Client"

description=".Net Framework Data Provider for Oracle"
type="Oracle.DataAccess.Client.OracleClientFactory, Oracle.DataAccess" />-->

Incorrect or Missing Library References

During compilation of remote business rules using .NET DLLs such as the ERPConnect

Library to interface with SAP, incorrect or missing library references will result in an error

similar (Smart Integration Connector compile error) to the image below.

Smart Integration Connector Guide 154

Troubleshooting

Script Error During Upgrade

During upgrades, you may run into the error "a script required for this install to complete

could not be run." The action to resolve this error is to rerun the Smart Integration

Connector installer. If you continue to see this error during upgrades, contact OneStream

support.

Data Returned as a String

Occasionally, data types can return as a string when you are expecting to see data in the

original source format. Smart Integration Connector transfers data in Apache Parquet

Smart Integration Connector Guide 155

Troubleshooting

format from the Local Gateway Service to OneStream. If you are transferring a data type

that is unsupported by parquet, the data converts and returns as string. You will need to

add logic to re-convert the string to the desired and supported data type if needed.

In certain cases, if you receive the error "The method or operation is not implemented"

then you can use a remote business rule to transfer data. This occurs when returning the

varbinary(max) datatype.

Manual Start and Stop

If you run into errors with the service, you may need to manually stop and restart the

service. This can be accomplished in the GUI-based Services control manager as shown

below or by using the command-prompt/PowerShell. The name of the service when

using command-line tools is "OneStreamSmartIntegration"

Using the Windows Service Control Manager:

1. Open Services from your Windows start menu.

2. Right-click on OneStream Smart Integration Connector Gateway.

Smart Integration Connector Guide 156

Troubleshooting

3. Select Stop.

4. Right-click again and select Start.

Using an elevated command-prompt:

1. net stop OneStreamSmartIntegration

2. net start OneStreamSmartIntegration

Using an elevated PowerShell prompt:

1. stop-service -ServiceName OneStreamSmartIntegration

2. start-service -ServiceName OneStreamSmartIntegration

Remote Endpoint Not Found/Could Not Decrypt

To troubleshoot the errors "Remote Endpoint Not Found" or "Could not decrypt

connection string on Smart Integration Connector Gateway Connection: [Gateway

Name]", check your service account permissions. The service account used will require

Smart Integration Connector Guide 157

Troubleshooting

local administrative rights to access resources on the Windows server, such as the

machine certificate store and private keys used for encryption.

Connections Requiring a Signed Certificate

For connections that require a signed certificate in order to establish a connection, then a

Certificate Authority (CA) needs to be accessible from the Smart Integration Connector

Local Gateway Server in order to function.

l Database Connections: CA needs to be accessible from the Smart Integration

Connector Local Gateway Server.

l Direct Connections: CA needs to be publicly accessible from OneStream.

Trusted Certificate Chain

If you are using Smart Integration Functions and set the SQL Server connection string

within the function, you may receive the following error:

A connection was successfully established with the server, but then an error occurred

during the login process. (provider: SSL provider, error: 0 - The certificate chain was

issued by an authority that is not trusted.)

Smart Integration Connector Guide 158

Troubleshooting

If you do not have a trusted certificate installed on your DB server, you can work around

this with TrustServerCertificate. However, this workaround is less secure and

discouraged in production environments. To resolve this error, include

TrustServerCertificate=True; to your connection string within the function.

Gateway Unable to Connect

If your Gateway cannot connect, check your Smart Integration Connector error log for:

[2023-10-04 07:09:59 INF] Starting Listener for: <site name>.servicebus.windows.net

[2023-10-04 07:10:00 ERR] Unable to connect: Generic: Ip has been prevented to

connect to the endpoint.

To resolve this issue, verify that the IP addresses in your Whitelisting to the Azure Relay

are set up properly. See Advanced Networking and Whitelisting.

Communication Error

If you see the following error in the Windows Service Log, it means that you have a

mismatched WebAPIKey. This could occur if the WebAPI key is changed in OneStream

Smart Integration Connector Guide 159

Troubleshooting

and the configuration for the Smart Integration Local Gateway service is not exported

from OneStream and re-imported into the Local Gateway Server service using the

configuration utility.

[14:13:36 INF] HTTP Request with invalid API key

You can resolve this error by matching the WebAPIKey in the configuration utility.

NOTE: If the value is changed, you must restart the service.

Host Header Communication Error

If you copy the business rule below and are having trouble communicating with your

WebAPI after compiling, ensure that you have set your host header correctly. Refer to

highlights in the screenshot below.

bytesFromFile = CompressionHelper.InflateJsonObject(Of System.Byte())
(si,objRemoteRequestResultDto.resultDataCompressed)
'The Smart Integration Connector Gateway now provides this type information back to
OneStream
'and streamlines this conversion process using a newly added property called
'ObjectResultValue which is populated.

Smart Integration Connector Guide 160

Troubleshooting

'When invoking the same operation shown above that previously required
'the type to be converted, a BR developer can do the following:
bytesFromFile = objRemoteRequestResultDto.ObjectResultValue

<DbProviderFactories>
<add name="Npgsql Data Provider" invariant="Npgsql" description="Data Provider for

PostgreSQL" type="Npgsql.NpgsqlFactory, Npgsql" />
<add name="MySQL Data Provider" invariant="MySql.Data.MySqlClient" description=".Net

Framework Data Provider for MySQL" type="MySql.Data.MySqlClient.MySqlClientFactory,
MySql.Data" />
<!--<add name="Oracle Data Provider for .NET" invariant="Oracle.DataAccess.Client"

description=".Net Framework Data Provider for Oracle"
type="Oracle.DataAccess.Client.OracleClientFactory, Oracle.DataAccess" />-->

Smart Integration Connector Guide 161

Troubleshooting

Frequently Asked Questions

Is Smart Integration Connector secure in comparison to using a VPN?

Yes, see below:

l Smart Integration Connector is encrypted end to end using TLS.

l Smart Integration Connector is 100% customer managed. IT is able to configure all

data sources to OneStream.

l Database connection strings are encrypted upon saving.

l Beginning in Version 8.2, users have the ability to mask passwords when creating a

database connection string.

l Smart Integration Connector is less invasive than VPN and is network friendly.

How do I adjust the reporting interval for Smart Integration Connector failures?

By default, failures will be reported every five minutes. It is recommended that you adjust

the reporting time intervals for queries that run for longer than five minutes.

Is there an easy way to see if my Gateway is connected and online?

Yes. You can check the status within OneStream from the System/Smart Integration

Connector page. Look to see if the status of the Gateway you selected is online.

Smart Integration Connector Guide 162

Frequently Asked Questions

For database connections, if the version is empty and the status is online, you may have

some firewall rules that are blocking full connectivity over port 443.

Status indicators in the list of gateways provide a visual indication of the Gateway status.

l Green: The Gateway is Online.

l Red: The Gateway is Offline.

l Yellow: (Database Connections only) The Gateway is Online and an update to the

Local Gateway Server is available.

NOTE: For Direct Connections, the yellow status is not displayed as

these connections do not report a version number back to OneStream.

Smart Integration Connector Guide 163

Frequently Asked Questions

Are there any ports or IPs that need to be whitelisted in our firewall to set up this

connection? How can we whitelist the Relay?

Smart Integration Connector Local Gateway Server requires port 443 outbound open to

communicate with the Azure Relay. If you need to further lock down the firewall, you can

limit the traffic outbound to go to *.servicebus.windows.net.

Are there data limitations we need to be concerned about?

Smart Integration Connector has a threshold limit of five million rows or five GB.

Additional CPU/RAM resources are required for large quantities of data. If this limit is

exceeded, you will receive a Smart Integration Connector Remote Query Error.

NOTE: This has been increased in v8.0 from one million return rows and two

GB.

Can anything other than JSON format be returned when using a WebAPI?

Any object type that can be wrapped in JSON can be returned.

Can I connect to multiple SFTP servers?

Yes. You can set up direct connections to multiple SFTP servers starting with 7.4.

Smart Integration Connector Guide 164

Frequently Asked Questions

Will OneStream upgrades stop the Gateways from running?

NOTE: For OneStream v8.4, it is required to use Smart Integration

Connector v8.4.

Although Smart Integration Connector is designed to be backwards compatible within

major versions, it is highly recommended and a best practice to always keep the two

versions synched.

Can I connect the Smart Integration Connector Gateway Service to both DEV and

PROD?

Yes, but this is not best practice. Customers in the past have tested large jobs in DEV that

have caused performance issues within PROD.

Why would we use BR API verses Remote Code Execution of Business Rules?

Remote code execution takes a simple OneStream BR and ships it to the Smart

Integration Connector Gateway to compile/run. The benefits of this are twofold:

Smart Integration Connector Guide 165

Frequently Asked Questions

l Customers can have a dependency on any third party .NET library they wish.

l Remote BRs support more complex data-ingestion scenarios as well. Picture data

being pulled from multiple file shares on a customer's network, then being

assembled/parsed and shipped back to OneStream. Some of this work could be

offloaded into the customer's environment where direct access to the data is

available.

What are some of the use cases for when we use the three Remote Code Execution

Options? Is there a Use Case for BR API method?

There are four options for invoking things remotely on the Smart Integration Connector

Gateway:

l ExecRemoteGatewayRequest: This is a general-purpose API that is used

internally inside OneStream to do everything on a remote endpoint. It is exposed to

provide granular control on timeouts or other custom scenarios.

l ExecRemoteGatewayBusinessRule: This takes a Smart Integration Function BR

built in OneStream and sends it to a specific Smart Integration Connector Gateway

to compile/run. It provides options to control caching to make it run faster on

subsequent calls since BR will already be compiled.

l ExecRemoteGatewayJob: This is similar to the second option listed above, but

instead of running synchronously and blocking things on OneStream, it is for long-

running BRs. Think of this like running a DM job on the Smart Integration Connector

Gateway that can run for up to thirty minutes. The status of the job is polled from

OneStream to obtain the status and gather the results.

l ExecRemoteGatewayCachedBusinessRule: This is a BR API to run a cached,

Smart Integration Connector Guide 166

Frequently Asked Questions

previously compiled BR on the Smart Integration Connector Gateway. This is

seldom used.

Are there any specific Business Rule functions that are not compatible with Smart

Integration Connector?

For business rule compatibility, see Business Rules.

What if I have a query that returns null values?

Beginning in Version 8.2, queries that contain null values are now being returned. Prior to

this, null values would have to be replaced with something, like a zero.

Are there any restrictions on the time queries are allowed to run?

Beginning in Version 8.2, queries that run longer than ten minutes will now return data.

Is IP Whitelisting supported?

In OneStream v8.1 and higher, specific IPs or CIDRs, a range of IPs, can be whitelisted

from the OneStream Windows Client Application. For details, see Advanced Networking

and Whitelisting.

Smart Integration Connector Guide 167

Frequently Asked Questions

../../../../../../../Content/SIC/Business Rules.htm
../../../../../../../Content/SIC/Whitelist Azure Relay.htm
../../../../../../../Content/SIC/Whitelist Azure Relay.htm

	Revision History
	About This Guide
	Benefits
	Common Understanding
	OneStream Client Application Terms
	OneStream Local Gateway Configuration Terms

	Architecture
	TLS/SSL Certificate
	Additional Considerations

	Requirements
	OneStream Smart Integration Connector Environment Setup
	Advanced Networking and Whitelisting

	Upgrade Smart Integration Connector
	Upgrade from

	Migration from VPN Considerations
	Setup and Installation
	Smart Integration Connector Setup Overview
	Gateway Terms
	Local Gateway Server Installation

	Create a Database Connection Gateway
	Create a Direct Connection Gateway (Optional)
	Export and Import the Gateway Configuration
	New Gateway Key Generation
	Connect a Local Gateway to a Data Source
	Microsoft SQL Server
	MySQL Data Provider
	Oracle Database Examples
	OracleClient Database Provider
	Oracle Data Provider for .NET

	PostgreSQL (Npgsql Data Provider)
	OleDb Data Provider
	ODBC Data Provider
	(Optional) Remove UserID and Passwords by Integrated Security
	Update the Local Gateway Connection String
	Update Permissions on the Service
	Test the Updated Integrated Connection String

	Microsoft Entra Authentication for Azure SQL

	Restart OneStream Smart Integration Connector Gateway
	Load Balanced Local Gateway Servers
	Create a Load Balanced Local Gateway Server

	Define Custom Database Connections in OneStream System Configuration Setup

	Smart Integration Additional Settings
	Local Application Data Settings
	Referenced Assemblies Folder
	Record Count Adjustments
	Maximum Records to Return when Paging
	Maximum Records to Return
	Row Count to Begin Paging Operations

	Local Configuration Parameters

	Log Settings

	Advanced Networking and Whitelisting
	Restrict Traffic to the Azure Relay
	Whitelist Outbound Traffic to Azure Relay Service from your Firewall
	Allow Traffic using Wildcard Domain (Best Practice)
	Allow Traffic using IP addresses (Not Recommended)

	Use Smart Integration Connector
	Examples
	Data Adapters Example
	SQL Table Editor Example
	Grid View Example
	Perform a Drill Back
	Perform a Write Back

	Support for SFTP
	C# SFTP Example
	VB STFP Example

	Transferring Files from Local FileShare
	Step 1 - Setup the Remote Server / Remote Share
	Step 2 - Pull file from Extender Business Rule
	Step 3 - Automate from Data Management / Task Scheduler

	Obtain Data through a WebAPI
	Single WebAPI Connection
	Multiple WebAPI Connections

	Sending Email through Smart Integration Direct Connections
	Support for DLL Migration
	Support for ERPConnect (SAP)

	Business Rules
	ExecRemoteGatewayRequest
	ExecRemoteGatewayCachedBusinessRule
	ExecRemoteGatewayJob
	ExecRemoteGatewayBusinessRule
	GetRemoteDataSourceConnection
	GetRemoteGatewayJobStatus
	GetSmartIntegrationConfigValue
	GetGatewayConnectionInfo
	Check OneStream Version
	BRApi.Utilities.IsGatewayOnline

	Business Rules Compatibility
	BRApi.Database.SaveCustomDataTable
	BRApi.Database.InsertOrUpdateRowBRApi.Database.DeleteRows
	SQL Bulk Copy
	SQL Transactions

	Limitations
	Parquet Format Transfer
	Load Balanced Local Gateway Servers
	Returning Multiple DataTables with Remote Business Rules
	Custom Email Connections
	FTP Transfers
	SQL Table Editor
	Precision using Decimals

	Troubleshooting
	Gateway Testing Issue Resolution
	Error Log
	Common Errors
	Memory Issues
	Gateway Version is Empty
	Custom Data Source Names
	Array cannot be null Error
	Opening and Saving Configuration Errors
	Incorrect or Missing Library References

	Script Error During Upgrade
	Data Returned as a String
	Manual Start and Stop
	Remote Endpoint Not Found/Could Not Decrypt
	Connections Requiring a Signed Certificate
	Trusted Certificate Chain
	Gateway Unable to Connect
	Communication Error
	Host Header Communication Error

	Frequently Asked Questions
	Is Smart Integration Connector secure in comparison to using a VPN?
	How do I adjust the reporting interval for Smart Integration Connector failur...
	Is there an easy way to see if my Gateway is connected and online?
	Are there any ports or IPs that need to be whitelisted in our firewall to set...
	Are there data limitations we need to be concerned about?
	Can anything other than JSON format be returned when using a WebAPI?
	Can I connect to multiple SFTP servers?
	Will OneStream upgrades stop the Gateways from running?
	Can I connect the Smart Integration Connector Gateway Service to both DEV and...
	Why would we use BR API verses Remote Code Execution of Business Rules?
	What are some of the use cases for when we use the three Remote Code Executio...
	Are there any specific Business Rule functions that are not compatible with S...
	What if I have a query that returns null values?
	Are there any restrictions on the time queries are allowed to run?
	Is IP Whitelisting supported?

