
Table Views Guide

9.2.0 Release



Copyright © 2025 OneStream Software LLC. All rights reserved.

All trademarks, logos, and brand names used on this website are the property of their respective

owners. This document and its contents are the exclusive property of OneStream Software LLC

and are protected under international intellectual property laws. Any reproduction, modification,

distribution or public display of this documentation, in whole or part, without written prior consent

from OneStream Software LLC is strictly prohibited.



Table of Contents

Table Views Spreadsheet and Excel Add-In 1

Overview 2

Technical Features and Setup 3

Restrictions 3

Table View Sizing 5

Table Views Spreadsheet/Excel Ribbon Button 5

Table View Business Rules 8

Spreadsheet Function Types 8

Processing Order 9

Using Parameters 9

Can Modify Data 10

Table View Conditions 11

Table View Sources 11

Table View Business Rule Example 12

Table Views Guide i

Table of Contents



GetTableView Function Type 12

Incorporating Parameters 22

Using XFTV Named Ranges 23

Security 28

Summary 32

Sample Table View Rules File 33

Table Views Guide ii

Table of Contents



Table Views Spreadsheet and
Excel Add-In
The primary purpose of Table Views is to provide a method for accessing or updating relational

data. This data is presented in a dashboard or inside the Excel Add-In. The use of Table Views

enables the designer to work in a more flexible environment to design a form or data collection

tool.

Table Views are not alternatives to other tools, such as the SQL Table Editor or Grid Viewer,

Dashboard Components.

Key Use:

l Designed to collect records from relational tables, or other sources

l Present the information in the Spreadsheet format

l Utilize client-side functionality, found in the Spreadsheet tool, such as calculations and

pick-list validation lists

l Table View Business Rules can be designed to manage the column field records, such as

updates, inserts and deletes.

Design Considerations:

l The current functionality is designed to update records in target tables

l Controlling elements must be designed into the Table View Business Rule by the creator to

ensure data integrity, security and performance

Table View Size Considerations:

Table Views Guide 1

Table Views Spreadsheet and Excel Add-In



l Table Views depends upon the number of rows and row content

l Paging is not supported. Therefore, all rows and content must be returned

l Performance testing and design expectations is to support approximately 8000 KB of data

per Table View.

Overview
A Table View definition for the Windows Application Spreadsheet Tool or Excel Add-In is defined

in a Business Rule.  The Administrator designing the rule can define the rows and columns which

should be returned to the worksheet from the source table presented in the Table View.

The Table View Business Rule can collect data frommultiple data sources. For example, a single

worksheet can display a Table View which collects data from two or more sources.

The Administrator has full control over the write back “save” process through Business Rules.

When designing the Table View Business Rule, the BRAPI Authorization functions should be

designed into the Business Rule to control access to the viewing or modifying the data. This can

be applied to the entire table or to specific cells. A workbook can contain multiple Table Views.

These can be on the same worksheet or across worksheet pages.

A single Business Rule file can be used to define multiple Table Views by calling the Business

Rule argument, TableViewName. Additionally, a single named range can be used to manage
table data cells within the Spreadsheet and Excel Add-In using user defined named ranges

(XFTV_*).

Table Views Guide 2

Table Views Spreadsheet and Excel Add-In



Technical Features and Setup
This section will review the various functional elements of the Table Views feature. The design of
Table Views involves having a thorough understanding of the source and target tables to be

viewed or modified. The Administrator developing the Table View will also be required to

understand the requirements needed for the final Spreadsheet form to design the Business Rule

at its most granular level. This will allow the Business Rules to be designed to the most restrictive

level which will maximize security and gain the highest performance.

Restrictions
Table Views should never read or write to OneStream Application controlling tables, such as Data

Tables, Cube Tables or Log Tables. 

l AppProperty*

l Attachment*

l Audit*

l Data*

l CalcStatus*

l Certify*

l Confirm*

l Cube*

l Dashboard*

l DataAttachment*

Table Views Guide 3

Technical Features and Setup



l DataCellDetail*

l DataEntry*

l DataMgmt*

l DataRecord*

l DataUnit*

l Dim*

l FileContents*

l FileInfo*

l Folder*

l Form*

l FxRate*

l ICMatchStatus*

l Journal*

l Member*

l Parser*

l Relationship*

l SecRoles*

l Stage*

l System*

l Taskflow*

l Time*

Table Views Guide 4

Technical Features and Setup



l Workflow*

Table View Sizing
The output interface to the Table View Business Rule is the OneStreamWindows Application

Spreadsheet and Excel Add-In.

Table Views should not be considered as a replacement for other Dashboard tools used with

database tables, such as the SQLTable Editor or theGrid View components which support very

large tables.

The Spreadsheet tool and Excel Add-In does not have a paging function to manage very large

data sets. Therefore, careful testing is recommended to verify the size and performance of the

records being managed with Table Views.

A significant impact on the performance of Table Views is the cell content. Along with the
physical number of rows, the content contained in the cells can dramatically affect performance.

The cell content is the key factor on the impact of the ultimate size on disk.

Table Views Spreadsheet/Excel Ribbon
Button
Table Views is a OneStreamWindows Application Spreadsheet and Excel Add-In feature used to

assign a Spreadsheet Business Rule to a worksheet.  All Table Views are derived through the

definition of a Business Rule, and only Administrators have the rights to create Business Rules. 

Table Views Guide 5

Technical Features and Setup



1. Open the OneStreamWindows Application and select Tools/Spreadsheet or Open your
Excel Add-In.

2. Select an available cell to begin the Table View range.

3. From theOneStream tool bar, choose the Table Views button.

4. Choose the Add button.  Selecting ellipsis button from the Table View Business Rule field
allows browsing the available Business Rules.  The selection will automatically assign the

Name and Refers To cell intersection. Only Spreadsheet type Business Rules will render
as a Table View.

Table Views Guide 6

Technical Features and Setup



5. The Table View will render in the worksheet and is associated with a named range.

6. Choosing the Refresh options will retrieve the most current results from the source table.

Table Views Guide 7

Technical Features and Setup



Table View Business Rules
Access to Table Views in Spreadsheet and Excel Add-In is limited to the Spreadsheet Business
Rule Type.The purpose of the Business Rule is to establish the source data records to be
displayed. The ability to save a record or field within a record is also completely defined within the

Business Rule. The Table View Business Rules also support Parameters to enable the resulting

Worksheet to be included in complex Dashboards.

Spreadsheet Function Types
l GetCustomSubstVarsInUse Used to define the interaction with OneStream Dashboard

Parameters

l GetTableView Used to define the source(s) for the Table View. 

l SaveTableView This function defines the table or cell intersection that should be written to

a target database table

Table Views Guide 8

Technical Features and Setup



Processing Order

The Spreadsheet Function Types are designed to manage the processes within a common

Dashboard environment.

1. GetCustomSubstitutionVariables is executed first. 

a. If the defined Parameter is contained within the Dashboard, the selection will act as a

bound parameter and will be passed into the business rule.

b. If the defined Parameter is not contained within the Dashboard, it will run/prompt the

user.

c. Additional conditional Parameters will be executed.  The Spreadsheet Business

Rules can conditionally execute additional Parameters, based on the results of

resolved Parameters.

2. Once all the Parameters are resolved, theGetTableView function will be processed.  This

section will generate the results in the Table View.  The Table View will also be evaluated to

determine if there will be any writable conditions.  If there a no writeable conditions, which is

the default, any refresh of the Spreadsheet/Table View will restart at the

GetCustomSubstitutionVariables function.

3. If the GetTableView is flagged as a writeable table, the SaveTableView process will be

executed, writing back only the elements specifically defined in the Business Rule.

Using Parameters

TheGetCustomSubstitutionVariables function is used incorporate Parameters into the Table
View.  Any parameters required are passed in as a list within the Function Type.  If the Parameter

is not included in the supporting Dashboard and resolved, for example as a Combo box, the

Parameter will be executed in the Table View to be resolved.

Table Views Guide 9

Technical Features and Setup



Additional Parameters can be included in the Table View to act as a nested, conditional

Parameter using the custSubtVarsAlreadyResolved function. This enables a resolved
Parameter to be evaluated to trigger additional Parameters to execute.  The

custSubstVarsAlreadyResolved can conditionally evaluate all resolved parameters to determine

subsequent parameters to be executed.

Can Modify Data

All Table Views will default to “read only”.  The Table View condition for CanModifyDatamust be
set to True to allow write-back capability.  The CanModifyData object is set in theGetTableView
Function Type.  It is only required if any write-back is required based on the current Table View. 

The True condition will enable objects to be passed, and enabled, in to the SaveTableView
Function Type. When refreshing a Table View, the SaveTableView Function Type will not be

executed unless the CanModifyData property is set to True.

Table Views Guide 10

Technical Features and Setup



Table View Conditions

A single Spreadsheet Business Rule can contain multiple Table View definitions.  The Table View

Name can be called using the Args.TableViewNameto allow conditionally calling rule functions.

Table View Sources
Table View Business Rules can collect a variety of data records as a source. Typically, a source is

defined as a table from a database. It is not limited to a single table but can collect records from

multiple tables. The Table View Business Rule designer can define the source essentially as any

data accessible to the Spreadsheet Business Rules. Similarly, the SaveTableView rules can be

defined to any target accessible by the Business Rules.

Table Views Guide 11

Technical Features and Setup



Table View Business Rule Example
This is an example only for the purpose of outlining the basic elements of a Table View Business

Rule.  By default, a Table View is “read only”.  A Spreadsheet Business Rule can be defined to

return a complete table. Always consider the size and content of the table as it may impact

performance. Elements that can impact performance, such as exceeding the ability to render the

Table View, are the total number of rows as well as the content within the records.

GetTableView Function Type

Database Connection

Create connections to sources, such as a database table using business rules.

Determine if the Table View Requires Write-Back

If the Table View must write-back to a target database or table, the CanModifyData property must
be set to True.

Table Views Guide 12

Technical Features and Setup



Define the Table View Columns

Table columns can be returned for the entire table, or as distinct items. When columns are

defined, they can be returned to the Table View using an alias description as part of a Header

section.

Create a nested, parameter-driven combo box in a Table View column by adding the following

code to your business rules: 

1 TableViewColumn  tableViewColumn1 = oTableView.CreateColumn("ParamName1", "Column1",
true, "Default.[pf8_1322_delimited_h_path_1]", true);

Table Views Guide 13

Technical Features and Setup



Returning Rows to the Table View

Each row cell is evaluated from the data table columns.  The designer has full control over the

display of the content of the table using Business Rule functions.  In the example below, the

presentation of the results will vary by column, by user using the BRAPI Security Authorization

function.

Table Views Guide 14

Technical Features and Setup



Security Filtering Results

Add New Records

Add new records to a table by assigning a specific range of editable rows at the bottom of the

Table View, which can be used by rules to commit the records into a table.  Format the

background area with a fill color to visually indicate the area is enabled for adding new records.

Use the Insert Rows feature to insert empty rows into a table and change the background color.

l CanModifyData: Set to True to False to determine if the table can contain empty rows.

l NumberofEmptyRowsToAdd: Set the number of empty rows to add.

l EmptyRowsBackgroundColor: Set the color of the background.

Table Views Guide 15

Technical Features and Setup



The following example shows the business rule applied to the table.

DataType Object for Column Fields

The DataType object allows the designer to define the Column Field as Text or Numeric. This

object references the current XFDataType object. However, not all XFDataType properties are

valid for Table Views. Only Int16, Int32, Int64, Float, Double, Decimal, and Textare valid.

If you do not specify a data type, it will default to Text.

Table Views Guide 16

Technical Features and Setup



In the example below, the Salary column is rendering the Table View Column fields as numeric

values to accurately reflect their nature and will support Spreadsheet based calculations.

Enable Status Column

The Table View Business Rule can create a dedicated status column. In the example below, it is

My Status column.  Use this to classify records for use in conditional business rule logic to drive

behaviors.

In this example, the business rule can define members for a drop-down list defined as Delete,

Archive, and Inactive. The designer creates business rules to perform actions based on the status

of the records, such as delete, or archiving to another table.

Table Views Guide 17

Technical Features and Setup



Use the Enable Status Column option to manage records for your table.

l statusColumnEnabled: creates a status column in the table view when set to True.

l statusColumnName: string defines the name of the column. If left blank, the default name
“XFTV_Status” will be assigned. 

l statusColumnIndex: zero-based integer identifies the column where the status is created.
A value above the actual number of columns will assign the Status as the last Column.  A

negative number wil assign the Status column as the first column.   

l statusColumnValues: creates a list of members to select as a validation in the Status
column.  It is a hidden range at the top of the Table View.  If left blank, no list or validation

will automatically be created in the Status column, it will need to be created manually by the

designer.    

In the screenshot below, notice the Delete, Archive, Inactive, which is entered in the business

rule.

Table Views Guide 18

Technical Features and Setup



Write Back

If theGetTableViewFunction Type is modified to set the Table View property CanModifyDataas
True, theSaveTableView Function will execute.  This section is used by the designer to define

which records should write back to the target.  The target table does not have to be the same as

the source table. 

Control conditions should be designed into the write-back rules for efficiency and performance. 

For example, Member Functions, such as IsDirty() can be incorporated to write only the modified
members within the writeable records.

Member Functions

Table Views Guide 19

Technical Features and Setup



l IsDirty– Condition Check if the item has been modified

l IsHeader– Member record status as a Header record.

l Name – Member label of the data table. Will not reference an alias label.

l OriginalValue– Condition reflects last stored value prior to the Table View refresh

l Value– Reflects the current value present on the Spreadsheet Table View.  This can be a
changed, unsaved value.

Table Views Guide 20

Technical Features and Setup



Create Table View From Data Table

You can create a Table View from Data Table using the Table View

PopulateFromDataTablefunction. The new function has two additional Boolean properties to

include a Header Row and to utilize the Data Table's Data Type. The function is able to utilize any

Data Table, including those from Dashboard Data Adapters using the GetAdoDataSetForAdapter

function.

Properties:

l tableView.PopulateFromDataTable(data Table , Include Header Row, Include Data Types)

Column Format Object

The ColumnFormat Object allows the Table View Designer to format the content area of a

column, while excluding the Column Header for use as a separately formattable column header

using the HeaderFormat object.

tableView.Columns(1).ColumnFormat.ColumnWidth = 15
l BackgroundColor

l ColumnWidth

l FontFamily

l FontSize

l IsBold

l IsItalic

l IsUnderlined

l TextColor

Table Views Guide 21

Technical Features and Setup



l NumDecimals

l AsPercentage

Header Format Object

The use of the HeaderFormat Object requires the PopulateFromDataTable to include a header or

a scripted data table to define a TableViewRow as IsHeader=True. This function allows a column

headers to be formatted as a row using all the formatting options except NumDecimals and

AsPercentage.

tableView.HeaderFormat.BackgroundColor = XFColors.Navy

Incorporating Parameters
CAUTION: The OneStream Parameters to be bound, or used, in the Spreadsheet Table

View are defined in theGetCustomSubstVarsInUse Function Type.   The Parameters
can be resolved as a component within a Dashboard, or they can be an element of the

Table View. Once resolved, the Parameter is passed to theGetTableView Function

Type.

Table Views Guide 22

Technical Features and Setup



Using XFTV Named Ranges
The purpose of creating a Spreadsheet using the “XFTV” named range is to manage data cells

with read and write functionality to a Table View.  This eliminates much of the work related to

creating dashboards which may require multiple text boxes, labels, combo boxes, business rules

and other controls to manage data across a table. 

The XFTV Named Range can be used to link a field to a Table View.  For example, a list of

members may be used in a drop-down list.  The selected item would then be used to write back to

a required field in a Table View, which would ultimately write to a target data source.

A cell used as a Table View reference must be prefixed with XFTV_ to pass into a Table View. 
The structure of the named range is “Prefix_Table View Name_Column Name_Row Number”.

The row number position is a zero-based index. For best performance when using XFTV Named

Ranges in Excel, we recommended using the Table View Column Name instead of the display

value.

Table Views Guide 23

Technical Features and Setup



Example

Sheet1 is designed as an interface or form based on records sourced from a table.

The data cell items are organized on the primary sheet with each being set as a XFTV named

range referencing Sheet2, which is the core Table View.

Sheet 2 is a Spreadsheet as defined by a Table Rule Business Rule

Table Views Guide 24

Technical Features and Setup



The Table View is added to the sheet and corresponds to the XFTV range definition on Sheet 1.

The XFTV named ranges associate their value to the Table View for read or write processing

dependent upon the Table View rule construction.

Modifying the Sheet1 “form” for an additional field simply requires adding a named range.

As an example, the “form” may require an additional field which may be found as a referenced

validation or from the source table view. For example, the “TermDate” field may be required.

Selecting the cell and adding the syntax for the XFTV named range, for the appropriate field, will

incorporate the results into the sheet.

Table Views Guide 25

Technical Features and Setup



The data will automatically refresh from the defined source. If defined as a write-back field,

changes to the cell can be written back to a target table using the “submit” function.

Table Views Guide 26

Technical Features and Setup



Table Views Guide 27

Technical Features and Setup



Security
Security is controlled by the Business Rule Developer in three ways. It is very important that the

business rule designer/author consider data security when creating table views. The session info

object within the rule can be used to restrict/grant data access for the current user. Second, the

writeback functionality will also be controlled within the business rule to the user population

allowed to perform the writeback, as well as the granular level elements which may be modified. 

Lastly, the Table View Business Rule itself should be secured for viewing or access outside of the

defined dashboard.

Data level, or Table level, security is incorporated within the Business Rule script.  Various BRAPI

functions can be conditionally included in the script to control the read and write functionality each

user will encounter when presented with the Table View.   Using Table View Name arguments in

the Business Rule, rather than relying on the default Business Rule Name, will also add an

additional level of security for related to the tables.

Table Views Guide 28

Security



Business Rule level security should also be utilized to restrict access to those who can edit and

modify the underlying Table View Business Rule. This can be done by using Business Rule
Encryption, which requires specific a user security role. Business Rule Encryption applies
password protection to any Business Rule it is applied to.

Additionally, the Business Rules for Table Views are stored in the Spreadsheet category.  To
control access to user’s access to retrieving the Table Views in their Application Spreadsheet, the

Access Group on each rule should exclude any user who is not a designer.

Table Views Guide 29

Security



The Table View function should be called using a condition for the Spreadsheet Table View

Name.  The will control all Table View functionality by a defined name, rather than through the

business rule alone.

Table Views Guide 30

Security



Table Views Guide 31

Security



Summary
The Table Views feature is intended to provide a flexible solution for Dashboard “form”
development when an update to a table is required.  This business rule-based solution can

manage records from a variety of sources, as well as control the target and granularity of the

write-back records.  This feature fully supports Dashboard based Parameters as well as additional

levels of Table View based parameters to build rich Spreadsheet based Dashboard interfaces. 

Table Views Guide 32

Summary



Sample Table View Rules File
Namespace OneStream.BusinessRule.Spreadsheet.TableViewSample

Public Class MainClass

Public Function Main(ByVal si As SessionInfo, ByVal globals As BRGlobals, ByVal api As Object,

ByVal args As SpreadsheetArgs) As Object

                Try

                Select Case args.FunctionType

                    Case Is = SpreadsheetFunctionType.Unknown

                    Case Is = SpreadsheetFunctionType.GetCustomSubstVarsInUse

                        Return GetCustomSubstVarsInUse(si, args.CustSubstVarsAlreadyResolved)

                    Case Is = SpreadsheetFunctionType.GetTableView

                        'The same business rule can support multiple Table Views.

                        If args.TableViewName.Equals("MyTableViewName")

                            Return GetMyTableView(si, args.CustSubstVarsAlreadyResolved)

                        End If

                    Case Is = SpreadsheetFunctionType.SaveTableView

                        SaveMyTableView(si, args.TableView)

                End Select

                Return Nothing

            Catch ex As Exception

                Throw ErrorHandler.LogWrite(si, New XFException(si, ex))

Table Views Guide 33

Sample Table View Rules File



            End Try

        End Function

Private Function GetCustomSubstVarsInUse(ByVal si As SessionInfo, ByVal

custSubstVarsAlreadyResolved

As Dictionary(Of String, String)) As List(Of String)

            Try

                'You will be prompted for the value of these variables if they have not been

resolved.

                Dim list As New List(Of String)

                list.Add("MyTableViewParameterName")

                Return list

            Catch ex As Exception

                Throw ErrorHandler.LogWrite(si, New XFException(si, ex))

            End Try                            

        End Function

Private Function GetMyTableView(ByVal si As SessionInfo, ByVal custSubstVarsAlreadyResolved

As Dictionary(Of String, String)) As TableView

            Try

                Dim sql As New Text.StringBuilder

                sql.AppendLine("Select * from MyTable")

                'You can use substitution variables that have been resolved within the query.

                If custSubstVarsAlreadyResolved.ContainsKey("MyTableViewParameterName")

sql.AppendLine("Where MyFilterColumn = '" & custSubstVarsAlreadyResolved

("MyTableViewParameterName") & "' ")

                End If

Table Views Guide 34

Sample Table View Rules File



                'Create and fill the data table

                Dim dt As DataTable = Nothing

                Using dbConnApp As DbConnInfo = BRApi.Database.CreateApplicationDbConnInfo(si)

                    dt = BRApi.Database.ExecuteSql(dbConnApp, sql.ToString, False)

                    If Not dt Is Nothing Then dt.TableName = "NoData"

                End Using

                'Create the Table View object

                Dim tableView As New TableView()

                'This allows the Table View data to be updated. This is set to False by default.

                tableView.CanModifyData = True

                'Create Columns on Table View using the Data Table columns.

                'Adding a header row to the Table View is optional

                Dim tableViewRowHeader As New TableViewRow()

                For Each dataColumn As DataColumn In dt.Columns

                    'You can conditionally hide a column

                    'If Not Convert.ToString(dataColumn.ColumnName).Equals("MyColumnToHide")

                        Dim column As New TableViewColumn()    

                        column.Name = dataColumn.ColumnName

                        column.Value = dataColumn.ColumnName

                        column.IsHeader = True

                        tableView.Columns.Add(column)

                        tableViewRowHeader.Items.Add(column.Name, column)

                    'End If

                Next dataColumn

                tableView.Rows.Add(tableViewRowHeader)

Table Views Guide 35

Sample Table View Rules File



                'Create Column Data Rows

                For Each dataRow As DataRow In dt.Rows

                    Dim tableViewRow As New TableViewRow()

                        For Each tableViewColumn As TableViewColumn In tableView.Columns

                            Dim column As New TableViewColumn()    

                            Dim columnValue As String = ""

                            column.Name = tableViewColumn.Name

                            columnValue = dataRow.Item(tableViewColumn.Name)

                        'You can show/hide/mask column conditionally (e.g. based on the user

group)

                            If column.Name.Equals("MySensitiveData") Then

If Not BrApi.Security.Authorization.IsUserInAdminGroup(si) Then

                                    columnValue = "Not Available"

End If

                            End If

                            column.Value = columnValue

                            column.IsHeader = False

                            tableViewRow.Items.Add(tableViewColumn.Name, column)

                        Next TableViewColumn

                        tableView.Rows.Add(tableViewRow)

                Next dataRow

                Return tableView

            Catch ex As Exception

                Throw ErrorHandler.LogWrite(si, New XFException(si, ex))

            End Try                            

        End Function

Private Function SaveMyTableView(ByVal si As SessionInfo, ByVal tableView As TableView) As

Boolean    

Table Views Guide 36

Sample Table View Rules File



                'Add code to check if the user has permission to write data.

                If Not tableView Is Nothing

                    Dim sql As String = String.Empty

                    Dim tableViewMyPrimaryKey As New TableViewColumn()

                    Dim tableViewMyColumnToUpdate As New TableViewColumn()

                    Using dbConnApp As DbConnInfo = BRApi.Database.CreateApplicationDbConnInfo

(si)

                        For Each tableViewRow As TableViewRow In tableView.Rows

                            If tableViewRow.IsHeader = False

                            For Each tableViewColumn As TableViewColumn In tableView.Columns

                                    If tableViewColumn.Name = "MyPrimaryKey"

                    tableViewMyPrimaryKey = tableViewRow.Item(tableViewColumn.Name)

                                    End If

                            If tableViewColumn.Name = "MyColumnToUpdate"

                        tableViewMyColumnToUpdate = tableViewRow.Item(tableViewColumn.Name)

                                End If

                                Next tableViewColumn

                                'Update the column value only if the value was changed.

                                If tableViewMyColumnToUpdate.IsDirty()

                            'Create audit records as needed before and after updating data.

sql = "Update MyTable Set MyColumnToUpdate = '" & tableViewMyColumnToUpdate.Value & "' Where

MyPrimaryKey = " & tableViewMyPrimaryKey.Value & " "

                                        BRApi.Database.ExecuteSql(dbConnApp, sql, False)

                                    End If

                            End If

                        Next tableViewRow

                    End Using

                End If

            Return True

Table Views Guide 37

Sample Table View Rules File



        End Function

    End Class

End Namespace

Table Views Guide 38

Sample Table View Rules File


	Table Views Spreadsheet and Excel Add-In
	Overview

	Technical Features and Setup
	Restrictions
	Table View Sizing
	Table Views Spreadsheet/Excel Ribbon Button
	Table View Business Rules
	Spreadsheet Function Types
	Processing Order
	Using Parameters
	Can Modify Data
	Table View Conditions

	Table View Sources
	Table View Business Rule Example
	GetTableView Function Type
	Database Connection
	Determine if the Table View Requires Write-Back
	Define the Table View Columns
	Returning Rows to the Table View
	Security Filtering Results
	Add New Records
	DataType Object for Column Fields
	Enable Status Column
	Write Back
	Create Table View From Data Table
	Column Format Object
	Header Format Object


	Incorporating Parameters
	Using XFTV Named Ranges
	Example


	Security
	Summary
	Sample Table View Rules File

