
Smart Integration
Connector Guide

9.1.1 Release

Copyright © 2025 OneStream Software LLC. All rights reserved.

All trademarks, logos, and brand names used on this website are the property of their respective

owners. This document and its contents are the exclusive property of OneStream Software LLC

and are protected under international intellectual property laws. Any reproduction, modification,

distribution or public display of this documentation, in whole or part, without written prior consent

from OneStream Software LLC is strictly prohibited.

Table of Contents

Revision History 1

About This Guide 7

Benefits 8

Common Understanding 9

OneStream Client Application Terms 9

OneStream Local Gateway Configuration Terms 12

Architecture 13

TLS/SSL Certificate 16

Additional Considerations 17

Requirements 19

OneStream Smart Integration Connector Environment Setup 19

Advanced Networking andWhitelisting 20

Upgrade Smart Integration Connector 21

Upgrade from 21

Smart Integration Connector Guide i

Table of Contents

Setup and Installation 24

Smart Integration Connector Setup Overview 24

Smart Integration Connector Terms 25

Local Gateway Server Installation 30

Create a Gateway Connection 31

Create a Direct Connection (Optional) 33

Export and Import the Connection Configuration 37

New Key Generation 39

Connect a Local Gateway to a Data Source 40

Microsoft SQL Server 42

MySQL Data Provider 42

Oracle Database Examples 43

PostgreSQL (Npgsql Data Provider) 46

OleDb Data Provider 47

ODBC Data Provider 49

Smart Integration Connector Guide ii

Table of Contents

(Optional) Remove UserID and Passwords by Integrated

Security 50

Microsoft Entra Authentication for Azure SQL 54

Restart the Smart Integration Connector Gateway 55

Load Balanced Local Gateway Servers 56

Create a Load Balanced Local Gateway Server 57

Define Custom Database Connections in OneStream System

Configuration Setup 60

Smart Integration Additional Settings 63

Local Application Data Settings 63

Referenced Assemblies Folder 64

Allow Remote Code Execution 65

Web API Bound Port 65

Maximum Records to Return when Paging 65

Maximum Records to Return 65

Row Count to Begin Paging Operations 67

Smart Integration Connector Guide iii

Table of Contents

Local Configuration Parameters 67

Log Settings 68

Advanced Networking andWhitelisting 71

Restrict Traffic to the Azure Relay 71

Whitelist Outbound Traffic to Azure Relay Service from your

Firewall 72

Allow Traffic using Wildcard Domain (Best Practice) 73

Allow Traffic using IP addresses (Not Recommended) 73

Use Smart Integration Connector 74

Data Adapters Example 74

SQL Table Editor Example 75

Grid View Example 77

Perform a Drill Back 78

Perform aWrite Back 81

Support for SFTP 84

C# SFTP Example 87

Smart Integration Connector Guide iv

Table of Contents

VB STFP Example 88

Transfer Files from Local FileShare 90

Step 1 - Setup the Remote Server / Remote Share 90

Step 2 - Pull file from Extender Business Rule 91

Step 3 - Automate from Data Management / Task Scheduler 94

Obtain Data through aWebAPI 94

Host Headers 95

Access a Single WebAPIs 95

Access Multiple WebAPIs 98

Send Emails through Smart Integration Direct Connections 99

Support for DLL Migration 102

SAP Connections 103

Business Rules 107

IsRemoteDtoSuccessful 108

ExecRemoteGatewayRequest 110

ExecRemoteGatewayCachedBusinessRule 114

Smart Integration Connector Guide v

Table of Contents

ExecRemoteGatewayJob 116

ExecRemoteGatewayBusinessRule 121

GetRemoteDataSourceConnection 130

GetRemoteGatewayJobStatus 131

GetSmartIntegrationConfigValue 134

GetGatewayConnectionInfo 136

Check OneStream Version 137

BRApi.Utilities.IsGatewayOnline 138

Business Rules Compatibility 140

BRApi.Database.SaveCustomDataTable 140

BRApi.Database.InsertOrUpdateRowBRApi.Database.DeleteRow

s 142

SQL Bulk Copy 142

SQL Transactions 142

Limitations 143

Business Rule Compatibility 143

Smart Integration Connector Guide vi

Table of Contents

Parquet Format Transfer 143

Returning Multiple DataTables with Remote Business Rules 144

Custom Email Connections 144

FTP Transfers 144

Internal Certificate Trust 144

SQL Table Editor 144

Precision using Decimals 145

Receiving Data from Smart Integration Connector 145

Sending Data to Smart Integration Connector 146

Troubleshooting 149

Error Log 149

Common Errors 150

Memory Issues 150

Gateway Version is Empty 150

Custom Data Source Names 151

Array cannot be null Error 151

Smart Integration Connector Guide vii

Table of Contents

Opening and Saving Configuration Errors 152

Incorrect or Missing Library References 153

Script Error During Upgrade 153

Data Returned as a String 154

Manual Start and Stop 154

Remote Endpoint Not Found/Could Not Decrypt 156

ERPConnect Module or Dependency Not Found 156

Connections Requiring a Signed Certificate 158

Trusted Certificate Chain 158

Unable to Connect 159

Communication Error 159

Host Header Communication Error 160

Gateway Testing Issue Resolution 161

Automatic Business Rule Decompression (Prior to Version

8.0) 164

Smart Integration Connector Guide viii

Table of Contents

Frequently Asked Questions 165

Security and Network Configuration 165

Configuration and Connectivity 166

Data Handling and Query Behavior 168

Integration and API Usage 169

Maintenance and Reliability 170

Host Headers 171

Migration from VPN 172

Troubleshooting 173

Smart Integration Connector Guide ix

Table of Contents

Revision History

Date Release Summary of Changes

19 August,

2025

9.1.0 Updated for release features, including the following

enhancements:

l RemovedWinSCP from the SIC Local Gateway

Installer. Best practice is to use SSH.NET for

SFTP transfers. See Support for SFTP.

l Revised phrasing of "Database Connection" to

"Gateway Connection" and adjusted related

gateway terms to align with new user interface

and tooltips.

l Update Connection icons for Gateway

Connections and Direct Connections.

l Split "Use Smart Integration Connector"

subheadings into separate sections for improved

document navigation.

l Move the following settings to Application Data

Settings:

o "Allow Remote Code Execution"

o "Web API Bind Port"

Smart Integration Connector Guide 1

Revision History

Date Release Summary of Changes

29 April, 2025 9.0.0 Updated for release features, including the following

enhancements:

l Load Balanced Gateway Servers support queries

over 1 million rows and Smart Integration

Functions that query for long running jobs.

l Enhanced debugging capabilities of Smart

Integration Functions / Remote Business Rules.

l Smart Integration Functions / Remote Business

Rules support returning more than 1 million rows

by default.

09 Dec, 2024 8.5.0 Updated for release features, including the following

enhancements:

l Added ability to mask and encrypt Configuration

Parameter Values.

l Connection strings greater than 245 characters

now will encrypt.

l Removed redundant copying of DLLs in the

"Referenced Assembly" folder upon service

startup.

l Version number is now displayed in the title bar.

l Added Frequently Asked Questions to the

documentation. See Frequently Asked Questions.

Smart Integration Connector Guide 2

Revision History

Date Release Summary of Changes

22 Aug, 2024 8.4.0 Updated for release features, including the following

enhancements:

l Improved performance and reliability of multi-

threaded / parallel processing for larger payloads.

l Streamlined process of setting up a redundant

Gateway Server.

l The active Gateway Server is now displayed

within the Gateway Setup in the Windows App.

l For Remote Business Rules, the number of rows

returned per query threshold has increased to 5M

/ 5GB of data.

l Added ability to check if the gateway is online via

a BRAPI.

Smart Integration Connector Guide 3

Revision History

Date Release Summary of Changes

17 Mar. 2024 8.2.0 Updated for release features, including the following

enhancements:

l Query results that contain NULL values are now

being returned.

l Added ability to mask the password when

creating a database connection string.

l Queries that run longer than 10 minutes will

consistently return data.

l Improved the reliability of multi-threaded

connections.

l Smart Integration Connector Local Gateway

Configuration Utility will automatically open the

configuration file for non-default install locations.

l DataTable / Datasets can now be sent via a

Remote Business Rule.

21 Nov. 2023 8.1.0 Updated to addWebAPI examples.

Smart Integration Connector Guide 4

Revision History

Date Release Summary of Changes

17 Nov. 2023 8.1.0 Updated for release features, including the following

enhancements:

l Customers can test their Smart Integration

Connector Gateways during set-up to ensure

there is nothing blocking port 443.

l The default Referenced Assemblies folder is in

C:\Program Files\OneStream

Software\OneStream Gateway\Referenced

Assemblies.

l The database connection strings in the

OneStream Local Gateway Configuration are

encrypted when saved.

l Specific IPs or CIDRs (a range of IPs) can be

whitelisted from the OneStreamWindows Client

Application.

l The OneStream Local Gateway Configuration

utility automatically opens the configuration file for

the user.

Smart Integration Connector Guide 5

Revision History

Date Release Summary of Changes

21 Aug. 2023 8.0.0 With this release, Smart Integration Connector is a

General Availability feature.

Updated for release features, including the following

enhancements:

l The 2GB .NET limit and 1 million return rows is

increased to 5GB and 5 million return rows.

l Business rules decompress automatically.

Smart Integration Connector Guide 6

Revision History

About This Guide
This guide is intended for OneStream administrators and IT professionals. It describes how to

manage Smart Integration Connector to connect local data sources to your OneStream Cloud

instance. OneStream Cloud Operations and Support can assist with the tasks needed to set up

Smart Integration Connector:

l Installing or upgrading to OneStream platform version 9.1.0.

IMPORTANT: The Smart Integration Connector Local Gateway Server version
9.1.0 is required to use with OneStream version 9.1.0. Previous versions of Local

Gateway Server will not communicate with OneStream version 9.1.0. Upgrade

your Local Gateway Server to version 9.1.0 to continue using Smart Integration

Connector. It is recommended to always keep your Local Gateway version

number and platform version number in sync.

l Installing Smart Integration Connector Local Gateway Server in your environment.

Smart Integration Connector Guide 7

About This Guide

Benefits
OneStream applications are strategic components in your financial environment. Data from

financial systems is imported to OneStream and contributes to financial closing and reporting

processes. While performing analysis, you leverage data lineage capabilities to make contextual

associations to data sources in your network.

The goals for Smart Integration Connector are to establish all required data source connections

without a VPN and establish residency and management of data source connections solely in

your network.

With Smart Integration Connector, you can:

l Securely establish connectivity between OneStream Cloud and data sources in your

network without a VPN connection.

l Create and manage network data source integration using OneStream administration

interfaces.

l Locally manage database credentials and ancillary files.

Smart Integration Connector Guide 8

Benefits

Common Understanding
Use the reference charts below to understand common terms used throughout the product and

this document.

OneStream Client Application Terms

Term Definition

OneStreamWindows Application

client

TheWindows client facilitating user interface

access for all user personas to OneStream

applications.

OneStreamWindows Application

Server (App Server)

The application server executing all OneStream

business logic and processing.

Connection

(Gateway Connection, Direct

Connection)

Connections define direct channels of integration

between the OneStream Cloud and a local

customer network. Connections are represented

by a unique key and are configured for

communication to an Azure Relay endpoint.

Connections carry a 1:1 correlation to a local

gateway on the SIC Local Gateway Server. The

channel of communication is established from the

OneStream connection and a local gateway is

created in Smart Integration Connector Local

Gateway Server.

Smart Integration Connector Guide 9

Benefits

Term Definition

Gateway Server A gateway server carries no unique technical

definition or configuration address. It is a node in

the tree control UI to organize connections and

typically corresponds to an installed local gateway

server name.

Custom Database Connections

(System Configuration)

Custom database connections define a named

data source to which OneStreammay connect

using Smart Integration Connector for the purpose

of data import, data export, or drill through

querying. The named custom database

connection is referenced in OneStream business

logic (data management objects or business rules)

to initiate data source connectivity. Credentials

and ancillary files required for a designated data

source connection are configured to and reside on

the corresponding local gateway server.

Direct Connection / Port Forwarding

(e.g. SFTP, Web API)

A direct connection represents a point-to-point

channel to designated resources such as an

SFTP server or Web API (including iPaaS

services). The OneStream Local Gateway Server

Configuration Utility UI facilitates configuration of

mapped connections to resources where the on-

premises TCP port is mapped to a server

(hostname/IP).

Smart Integration Connector Guide 10

Benefits

Term Definition

Gateway Connection (e.g. DBs, DLL

Integrations)

A gateway connection represents the ultimate

datasource destination for Smart Integration

Connector, and is typically associated with a local

gateway connection that connects to a designated

database. The OneStream Local Gateway Server

Configuration Utility facilitates configuration of

required credentials and supporting files. The

identification of a local gateway connection must

correspond to a custom database connection

established to the OneStream Application Server.

Smart Integration Function

(Remote Business Rule)

A Smart Integration Function (Remote Business

Rule) is created in the Windows Desktop Client

and compiled and executed on the local gateway

server.

IPv4 Whitelist (Whitelisting) Whitelisting can be applied to the Relay via IP

addresses in the OneStreamWindows Application

client and also applied to your firewall via

namespaces through your IT Admin.

Smart Integration Connector Guide 11

Benefits

OneStream Local Gateway Configuration Terms

Term Definition

Local Gateway Server Smart Integration Connector requires a client

installation on Windows servers to establish a

local gateway server. The local gateway server

houses one or more local gateways which are

configured through the OneStream Local

Gateway Configuration.

Local Gateway Local gateways define the local customer

endpoint for distinct channels of communication

used by Smart Integration Connector. A local

gateway facilitates connections to local

databases, Web API connections, iPaaS servers,

or sFTP servers and corresponds 1:1 with a

gateway definition on the OneStream Application

Server. To ensure a valid connection, a local

gateway must be configured by importing the

corresponding gateway definition exported from

the OneStreamWindows Application client.

Local Gateway Connections Local gateway connections are typically database

connections defined in the utility and confirm the

connection between the local gateway and the

local data sources.

Smart Integration Connector Guide 12

Benefits

Term Definition

OneStream Local Gateway

Configuration

This utility is where you configure the local

gateway server, local gateways and local gateway

connections to data sources.

Architecture
In contrast to a direct data source connection established using a VPN, Smart Integration

Connector makes an indirect connection to data sources. Smart Integration local gateways

integrate with on-premises customer environments through a cloud hosted service called Azure

Relay. The locally installed and configured local gateway server makes the direct connection to

data sources and responds to the OneStream application.

Smart Integration Connector Guide 13

Benefits

NOTE: In OneStream, Custom Database Server Connections define the relationship

between the Smart Integration Connector connection gateway and the data source.

The two primary services of Smart Integration Connector are:

l OneStream Application Server: The application server brokers communication between
the OneStream Cloud instance application and the Azure Relay service.

l Local Gateway Server: Instances of the Smart Integration Connector Local Gateway
Server are installed inside your network and configured to make direct connections to

designated data sources. The Smart Integration Connector Local Gateway Server runs as

a Windows service and brokers communication between local data sources and Azure

Relay using an outbound connection over port 443. All communication is encrypted end to

end through TLS.

The components of the Smart Integration Connector are:

l OneStreamWindows Application client

Direct and Gateway Connections configured through

System > Administration > Smart Integration Connector.

NOTE: The SmartIntegrationConnectorAdminPage role must be assigned to a
user for this to be visible.

l A Custom Database Connection to the local gateway data source. Custom Database

Connections are configured in

System > System Configuration > Application Server Configuration > Database
Server Connections.

NOTE: The ManageSystemConfiguration role must be assigned to a user for this
to be visible.

Smart Integration Connector Guide 14

Benefits

l OneStream Smart Integration Connector Local Gateway Server

o Connection Settings provide the information to establish the relationship with the

OneStreamWindows Application. Connection Settings are exported from the

connection settings in the OneStreamWindows Application and imported to the

Local Gateway section of theOneStream Local Gateway Configuration.

o Local Gateway Connections provide the setup information necessary for the Smart

Integration Connector Local Gateway to connect to local data sources. Local

Gateway Connections are set up through theOneStream Local Gateway
Configuration in the Gateway Connections Settings section.

Smart Integration Connector Guide 15

Benefits

TLS/SSL Certificate

Communication between the OneStream Application Server(s) is encrypted end-to-end. For

additional information about certificates and certificate errors, see Troubleshooting.

Gateway Connection example:

Smart Integration Connector Guide 16

Benefits

Direct Connection example:

NOTE: Certificate errors in the OneStream Application Server caused by a domain

name mismatch between the WebAPI domain name and OneStream hostname are

ignored. This occurs because the business rule uses localhost:{boundPort} for

the hostname and the response contains a certificate with a hostname specific to the

API (for example, someapi.org).

Additional Considerations
l To provide high availability there can be multiple instances of a designated local gateway

server, each running on a separate server bound to the same connection.

l Multiple local gateways can be installed to establish global connectivity to data sources in

different subnetworks.

Smart Integration Connector Guide 17

Benefits

l Local gateway configuration must align to the corresponding connection as defined in the

OneStreamWindows application. An export process from the OneStreamWindows

application connection user interface can assist with the alignment to ensure corresponding

names and keys are identical.

Smart Integration Connector Guide 18

Benefits

Requirements

OneStream Smart Integration Connector
Environment Setup

l Install compatible versions of the OneStream application and Smart Integration Connector

Local Gateway Server. It is recommended to install matching versions of the applications.

IMPORTANT: The Smart Integration Connector Local Gateway Server version
9.1 is not compatible with prior versions of OneStream .

o To install or upgrade OneStream to the latest version, see Setup and Installation.

o To install or upgrade Smart Integration Connector Local Gateway Server to the latest

version, see Upgrading Smart Integration Connector.

NOTE: Although OneStream version 9.1.0 is designed to be compatible

with Smart Integration Connector Local Gateway Server version 9.1.0,

performance and functionality cannot be guaranteed. Upgrading to version

9.1.0 is recommended.

l Work with your IT team to install the latest version of the Smart Integration Connector Local

Gateway Server in an appropriate environment.

o Windows Server 2019+

o .NET Framework 4.8

o 2 newer generation x64 CPU cores (or equivalent virtual processors)

Smart Integration Connector Guide 19

Requirements

NOTE: ARM processor compatibility testing is outside the current testing

scope of Smart Integration Connector.

o Memory (RAM)

n Minimum 16GB for queries / parallel jobs returning less than 1M / 3M rows or

1GB / 3GB of data respectively.

n Minimum 32GB for queries / parallel jobs returning less than 5M / 15M rows or

5GB / 15GB of data respectively.

NOTE: Memory and processor requirements are driven by the frequency
and volume of remote data accessed through the gateway service or if

remote business rules / long running jobs are leveraged. For queries

returning over 1 million records, 32 GB or more RAM is recommended.

o The installer requires administrative permission on the server to perform the

installation.

o See Smart Integration Connector Local Gateway Server Installation.

l Create a valid Connection to be used as the baseline communication between OneStream

Cloud and the Smart Integration Connector Local Gateway Server. See Create a Gateway

Connection and Create a Direct Connection for more information.

l Be a OneStream administrator to configure corresponding data sources in the OneStream

environment.

Advanced Networking and Whitelisting
It is a best practice to filter and/or whitelist network traffic for the Smart Integration Connector, you

will need to work with your IT team to restrict this traffic. See Advanced Networking / Whitelisting

for more information. For any additional questions, please reach out to Customer Support.

Smart Integration Connector Guide 20

Requirements

Upgrade Smart Integration
Connector
The following section describes how to upgrade Smart Integration Connector.

IMPORTANT: The Smart Integration Connector Local Gateway Server version 9.1.0 is
required to use with OneStream version 9.1.0. Previous versions of Local Gateway

Server will not communicate with OneStream version 9.1.0. Upgrade your Local

Gateway Server to version 9.1.0 to continue using Smart Integration Connector. It is

recommended to always keep your Local Gateway version number and platform version

number in sync.

Upgrade from
l Private Preview versions 7.2, 7.3,

l Limited Availability version 7.4, or

l General Availability versions 8.x to 8.4

As part of the upgrade, you can expect the following:

l A copy of the original configuration file from the prior version will be saved.

l Existing connections should continue to function as they did prior to the install.

l If the Smart Integration Connector Windows Service is running, then the service will

automatically be started after install.

Smart Integration Connector Guide 21

Upgrade Smart Integration Connector

IMPORTANT: OneStream version 9.1.0 will only communicate with Smart

Integration Connector Local Gateway Server version 9.1.0.

If you perform an upgrade and have issues or do not achieve these results, contact OneStream

Support.

1. Install the latest version of OneStream. The latest version can be requested and scheduled

through the OneStream Software Cloud Customer Service Catalog. Make a note in the

details section of the ticket that you want to install and configure the Smart Integration

Connector.

2. Download the Smart Integration Connector install (OneStream_Connector_#.#.#.zip) file

from the Platform section of the Solution Exchange.

3. Extract the OneStreamSmartIntegrationConnectorGateway-#.#.#.#####.msi from the

downloaded zip file.

4. Back up a copy of your configuration folder and sub folders before upgrading. Default is:

C:\Program Files\OneStream Software\OneStream Gateway\.

5. Follow the steps in Setup and Installation to complete your upgrade.

NOTE: If the upgrade process is interrupted or canceled, the Smart Integration
Connector must be reinstalled.

Smart Integration Connector Guide 22

Upgrade Smart Integration Connector

https://onestreamsoftware.service-now.com/support
https://solutionexchange.onestream.com/dashboard/home/browse

If the Smart Integration Connector Windows Service was configured to start using a custom

service account prior to upgrading, confirm that the service is set to start using the correct service

account after the upgrade is completed.

NOTE: For OneStream Local Gateway Server version 8.1 and above, the new default

location for Reference Assembly Folder is C:\Program Files\OneStream

Software\OneStream Gateway\Referenced Assemblies.

Smart Integration Connector Guide 23

Upgrade Smart Integration Connector

Setup and Installation

Smart Integration Connector Setup
Overview
You must set up Smart Integration Connector in this order:

1. Install theOneStream Smart Integration Connector Local Gateway Server
(OneStreamSmartIntegrationConnectorGateway-#.#.#.#####.msi) on a Windows Server

2019+ in your environment.

2. Create a Smart Integration Connector connection in the OneStreamWindows application to

connect OneStream Cloud instance to a Local Gateway on the Local Gateway Server.

3. Export the connection configuration and import this configuration to theGateway Settings
in theOneStream Local Gateway Configuration.

4. For Database Connections:

a. Define a Local Gateway connection including Data Sources through theOneStream
Local Gateway Configuration.

b. Test any configured Data Sources to confirm they are communicating properly.

NOTE: Testing direct connections may involve building test business rules
to perform proper validation.

c. Define a custom database connection in the OneStream System Configuration

Setup.

Smart Integration Connector Guide 24

Setup and Installation

When installation is complete, you can access remote data sources using business rules,

member formulas, or dashboard data adapters in OneStream through the Smart Integration

Connector.

Smart Integration Connector Terms

The Smart Integration fields define the gateway. You can find more information about this below.

Term Definition

Relay Name Refers to the internal namespace of the relay

service that is responsible for managing the data

flow for all defined Gateways. For example, arn-

mysite.servicebus.windows.net.

IPv4 Whitelist Contains the list of IPs or CIDR addresses that

are allowed to transfer data through Smart

Integration Connector.

Name The name of the connection. Names are

completely arbitrary and typically refer to the

region (North East) or data source such as (SAP).

The name cannot be changed once created, and

they must be unique across all environments—

both development and production. You can delete

an existing connection and recreate it with a new

name.

Smart Integration Connector Guide 25

Setup and Installation

Term Definition

Description Text describing the role and purpose for the

connection and the data sources to which it is

connecting.

Gateway Server Name Use for display and organizational purposes only.

This is the name of the gateway server associated

with the connection. You can select an existing

gateway server or enter a new one.

Web API Key

(Gateway Connections only)

This is an editable field. You can change your key

as needed. If changed, it must also be changed in

the Smart Integration Connector Local Gateway

Server. It is designed to offer an additional layer of

protection within your network when invoking

APIs embedded in the Smart Integration

Connector Local Gateway Server. The purpose of

the Web API Key is to give you full control on who

can access the data sources in your network.

Gateway Key This is the cloud key used to authenticate the

Smart Integration Connector gateway to the

customer OneStream environment. This key can

be rotated in the OneStream application by Smart

Integration Connector Gateway administrators

and must be the same in both the remote

Gateway service and in OneStream.

Smart Integration Connector Guide 26

Setup and Installation

Term Definition

Status Value will be Online if the local connection is

running and returning heartbeat messages back

to OneStream. If the Smart Integration Connector

Local Gateway Server is unavailable, stopped, or

network connectivity is interrupted, it will display

Offline.

Status Indicators Status indicators in the list of gateways provide a

visual indication of theGateway status.

l Green: The Gateway isOnline.

l Red: The Gateway isOffline.

l Yellow: (Gateway Connections only) The
Gateway isOnline and an update to the
Local Gateway Server is available.

NOTE: For Direct Connections,
the yellow status is not displayed

as these connections do not

report a version number back to

OneStream.

Instance Count Displays the number of active gateways. Up to

five active gateways per environment are

supported. This can be increased by contacting

Support.

Smart Integration Connector Guide 27

Setup and Installation

Term Definition

Version

(Gateway Connections Only)

Displays the Smart Integration Connector Local

Gateway Server version. This version may be

different from the deployed version of OneStream

and allows administrators to observe and monitor

versions of Smart Integration Connector Gateway

software deployed.

Active Local Gateway Server

Computer Name

(Gateway Connections Only)

Displays the computer name of the first Local

Gateway Server that connected to the Relay.

Bound Port at Gateway Remote port bound to Gateway endpoint.

Gateway Connections default to 20433 and

should not be changed without consulting

support.

Direct Connections allow any port running on a

remote host to be used. This port represents the

well-known TCP service to expose from an on-

premises host such as sFTP, which would equate

to port 22.

Smart Integration Connector Guide 28

Setup and Installation

Term Definition

Remote Gateway Host

(Direct Connections Only)

Remote port host to Gateway Server. Used if

surfacing an endpoint such as an SFTP Server.

This could be the hostname or IP address on the

network that the Gateway Server resides in. For

example: 172.168.4.7 or sftp.mycompany.com

Bound Port in OneStream

(Direct Connections Only)

The internal port that OneStream uses for secure

communications with Direct Connections. The

port must be globally unique for every connection

in the deployment environment. The port number

must be greater than 1024 and less than 65535.

The recommended best practice is to

automatically assign an available port number

when the gateway is created. To automatically

assign an unused port, select (Auto Assigned).

The port can be referenced in data management

or business rules to directly access services such

as sFTP andWebAPI.

Gateway failures reporting interval

(min)

Minutes to wait between reporting connection

failures into the OneStream Error Log. The default

is five minutes and the max is 1440 minutes. If a

connection is unreachable, an item is put in the

error log using this interval value in minutes and

the minutes can be adjusted.

Smart Integration Connector Guide 29

Setup and Installation

Local Gateway Server Installation

Smart Integration Connector is available in OneStream from the System > Administration tab.

1. Download the Smart Integration Connector installer (OneStream_Connector_#.#.#.zip) file

from the Platform section of the Solution Exchange.

2. Copy the Smart Integration Connector Local Gateway Server installer to a Windows

Server within your environment.

3. Run the installer as an administrator. Accept all the default prompts. When completed, the

Local Gateway Server will be installed on your Windows Server.

IMPORTANT: If you are upgrading, you must follow steps 4-7.

4. Run theOneStream Local Gateway Configuration Utility.

5. The XFGatewayConfiguration.xml file will open by default.

Smart Integration Connector Guide 30

Setup and Installation

https://solutionexchange.onestream.com/dashboard/home/browse

IMPORTANT: Do not change the name of the XFGatewayConfiguration.xml file.
The OneStream Smart Integration Connector Gateway Service only references

this XFGatewayConfiguration.xml file upon start-up. The Save As functionality is
used to create a backup of the file. It is best practice not to rename, move, or

change the location of the XFGatewayConfiguration.xml file. If the configuration

file has to be opened from another location, then it will need to be opened from this

other location again after the upgrade.

6. Save the configuration file.

7. Follow the dialog prompts and restart the service.

Create a Gateway Connection
Gateway Connections are used to connect OneStream to the Smart Integration Connector Local

Gateway Server over the Azure Relay. At least one Gateway Connection is required for Smart

Integration Connector to function properly. After the connection is created, you will need to copy

the configuration to the Smart Integration Connector Local Gateway Server using the OneStream

Local Gateway Configuration.

NOTE: For descriptions of the fields in this procedure, see Smart Integration Connector
Terms.

To create a Gateway Connection :

1. Go to System > Administration > Smart Integration Connector.

2. Click Create New Connection.

3. Enter the Name and Description.

Smart Integration Connector Guide 31

Setup and Installation

NOTE: The Connection name cannot be changed once created and must be
deleted and re-created.

4. Select theGateway Server from the drop-down, or enter a new Gateway Server name in

the same field. If this is the first Connection being created, enter the name of the Gateway

Server.

NOTE: It is common practice to use the hostname or IP of your Smart Integration

Connector Local Gateway Server as the "Gateway Server" name. The Gateway

Server name is only used to organize servers when multiple Smart Integration

Connector servers are set up.

5. From Connection Type, selectGateway Connection.

NOTE: Each Gateway Server will only need one Gateway Connection and as
such we recommend naming it "Gateway_Connection_" followed by the name

used for "Gateway Server." This will differentiate the Gateway Connections in

future steps.

6. TheWeb API Key is used as an additional layer of security when communicating with the

Smart Integration Connector Local Gateway Server internal APIs.

Smart Integration Connector Guide 32

Setup and Installation

NOTE:WebAPI keys are not required, but are best practice to enhance security

and can be modified or added at any time. The Local Gateway Service introduces

a WebAPI exposed only to OneStream and bound only to localhost on the server it

is deployed to. This WebAPI is inaccessible on the remote network. If the Local

Gateway Service is bound to other network interfaces, it is suggested to use the

WebAPI as a mechanism to enhance security on the remote network preventing

unauthorized use of OneStreamWebAPIs.

7. Copy the configuration to the Smart Integration Connector Local Gateway Server using the

OneStream Local Gateway Configuration application. For details, see Export and Import

the Connection Configuration.

Create a Direct Connection (Optional)
A Direct Connection is a point-to-point channel to a specific remote network resource such as an

sFTP server or Web API (including iPaaS services).

NOTE: At least one gateway connection is required to use a Direct Connection because
the gateway connection is used to monitor the availability of the remote Smart

Integration Connector Gateway servers.

The existence of a gateway connection does not necessarily mean it must be used or

configured to a data source if only Direct Connections are desired.

NOTE: For descriptions of the fields in this procedure, see Smart Integration Connector
Terms.

To create a direct connection:

Smart Integration Connector Guide 33

Setup and Installation

1. (Required) A Gateway Connection must be created before the Direct Connection is

created. The Gateway Connection is used to monitor the availability of the remote Smart

Integration Connector Gateway server. For details, refer to Create a Gateway Connection.

2. Go to System > Administration > Smart Integration Connector.

3. Click Create New Connection.

4. Enter the Name and Description.

NOTE: The Connection name cannot be changed once created and must be
deleted and re-created.

5. Select theGateway Server from the drop-down, or enter a new Gateway Server name in

the same field. If this is the first Connection being created, enter the name of the Gateway

Server.

NOTE: It is common practice to use the hostname or IP of your Smart Integration

Connector Local Gateway Server as the "Gateway Server" name. The Gateway

Server name is only used to organize servers when multiple Smart Integration

Connector servers are set up.

6. From Connection Type, select Direct Connection / Port Forwarding.

7. Enter the Bound Port at Gateway. This port represents the well-known TCP service to

expose from an on-premises host such as SFTP, which would equate to port 22.

NOTE: The remote service port is required to configure the connection and may
require consultation with network or IT resources to obtain it. It is also required

that any firewalls between the Local Gateway Server and the remote host allow

traffic to the destination port specified.

Smart Integration Connector Guide 34

Setup and Installation

8. Enter the Remote Gateway Host. This represents the remote host name or IP address

accessible by the OneStream Smart Integration Connector Local Gateway Server. If the

host or IP address is accessible or resolvable from the OneStream Smart Integration

Connector Gateway service or using remote resources accessible through on-premises

WAN, it can be exposed for use.

9. For Bound Port in OneStream, select (Auto Assigned) (default and recommended
setting) or Enter Port Manually. See Smart Integration Connector Terms for additional
information.

l (Auto Assigned) (default and recommended setting) to allow the OneStream

application to automatically assign an unused port number. When the Direct

Connection is created, the port number is shown in the connection settings.

l Enter Port Manually: Enter an unused port number. The port number must be
greater than 1024 and less than 65535.

10. ClickOK.

11. Using this direct connection in OneStream is done by accessing localhost: [Bound

Port In OneStream] which will tunnel traffic back to the configured remote Gateway

Host to the configured bound port at gateway.

Smart Integration Connector Guide 35

Setup and Installation

l Example: Remote SFTP server at 172.168.3.4 listening on port 22.

l Bound Port in OneStream defaulted to (Auto Assigned).

Note that when (Auto Assigned) is used, the selected port number is
available/displayed after saving and also surfaced in the OneStream Error Log.

l In OneStream Business Rules, you can access the remote host by connecting to

localhost:"Bound Port in OneStream" portExample: localhost:45000.

l In a OneStream Business Rule, this port can also be obtained in code allowing this

port number to be changed without updating Business Rules:

Dim gatewayDetails As GatewayDetails = BRApi.Utilities.GetGatewayConnectionInfo
(si, "northamerica_sftp")
Dim remotePort = gatewayDetails.OneStreamPortNumber

Smart Integration Connector Guide 36

Setup and Installation

Export and Import the Connection
Configuration
You must copy the connection configuration settings and paste them into your Smart Integration

Connector Gateway to establish the connection.

1. Go to System > Administration > Smart Integration Connector.

2. Select the Connection to export.

3. Click Export Connection Configuration. The Connection Details are copied to the

clipboard.

Smart Integration Connector Guide 37

Setup and Installation

4. On your Windows Server, open theOneStream Local Gateway Configuration. This runs
as administrator by default.

5. The existing XFGatewayConfiguration.xml opens by default.

6. Click next to Local Gateway Settings.

7. Import Import Gateway Configuration to import the previously copied Connection

Configuration.

8. Click Apply.

9. Click Test Connection to test the connection.

Smart Integration Connector Guide 38

Setup and Installation

10. ClickOK twice.

11. Save the configuration.

12. Click Yes to apply the changes and restart the Local Gateway Server.

New Key Generation

Smart Integration Connector administrators can rotate the Key maintained by the underlying cloud

service; however, it must be the same for both the Smart Integration Connector local gateway and

the gateway configuration in the OneStreamWindows Application to function properly.

1. Select an existing connection.

2. Click Regenerate Key for Selected Connection.

3. You must re-export your Connection Configuration and apply the new settings throughout

the OneStream Local Gateway Configuration. See Export and Import the Connection

Configuration.

4. ClickOK.

Smart Integration Connector Guide 39

Setup and Installation

Connect a Local Gateway to a Data Source

A data source contains the name, connection string, and database provider for the database of

your choice. You can set up a PostgreSQL, SQL, Oracle, OleDb, MySQL, ODP.net, or Microsoft

ODBC connection. The data source is configured using the Local Gateway Configuration Utility.

The utility was installed as part of the Smart Integration Connector Local Gateway installation.

1. Start theOneStream Local Gateway Configuration.

2. The existing XFGatewayConfiguration.xml opens by default.

3. Click More next to Local Gateway Connections to set up the Data Sources to local

databases, APIs, or other on-premises resources.

4. Click Add Item to add a new data source.

Smart Integration Connector Guide 40

Setup and Installation

5. If you have a password for the connection string, enter it in the Connection String
Password field. The password is masked for security. Then, when you need to enter your
connection string password, use the substitution variable: |password|

Example: Data Source=localhost;Initial Catalog=Sales_DB;Persist

Security Info=True;User ID=sa;Password=|password|;

6. Enter the Data Source Name, Connection String, and select a Database Provider.

NOTE: For security purposes, we recommend using the Connection String
Password field and the substitution variable to ensure the password is not shown

on screen. However, you can also embed the password directly within your

connection string. For example: Server = localhost;Port=3306;uid=root;pwd=my_

password;database=gatewaymysql;.

You can add as many data sources as necessary. The Data Source Namemust be unique
for each connection defined within a specific OneStream Smart Integration Connector

Local Gateway Server. Names can be re-used across deployed instances of the Windows

Service across your network. See below for connection string examples to a variety of

relational data sources such as PostgreSQL, SQL, and ODBC, and Oracle. Connection
Strings are encrypted automatically. You can edit the plain text string by clicking the
ellipsis.

NOTE: Oracle databases require drivers and specific configuration provided by
Oracle.

7. ClickOK to save your configuration.

IMPORTANT: The connection strings below include user IDs and the password

substitution variable. You can also use integrated security to remove plain text

user IDs and passwords from connection strings in Smart Integration Connector.

See Remove UserID and Passwords by Integrated Security.

Smart Integration Connector Guide 41

Setup and Installation

Microsoft SQL Server

Below is an example for setting up a SQL database using the SqlClient provider.

1. Click More next to Local Gateway Connections.

2. Click Add Item to add the data source.

3. Data Source Name: Northeast_Sales

4. Connection String:
with UserID / Password:

Server=localhost;Initial Catalog=Sales_DB;User ID=sa;Password=|password|;Max Pool

Size=1000;Connect Timeout=60;

5. Enter your Connection String Password.

NOTE: For security purposes, we recommend using the Connection String
Password field and the substitution variable to ensure the password is not shown

on screen. However, you can also embed the password directly within your

connection string. For example: Server = localhost;Port=3306;uid=root;pwd=my_

password;database=gatewaymysql;.

6. From Database Provider, select SqlClient Data Provider.

7. Click Test Connection to test the data source.

8. ClickOK to save.

MySQL Data Provider

Below is an example for setting up a MySQL Data Provider.

Smart Integration Connector Guide 42

Setup and Installation

1. Click More next to Local Gateway Connections.

2. Click Add Item to add a new data source.

3. Data Source Name: Sales_UK

4. Connection String:
Server = localhost;Port=3306;uid=root;pwd=|password|;database=gatewaymysql;

5. Enter your Connection String Password.

NOTE: For security purposes, we recommend using the Connection String
Password field and the substitution variable to ensure the password is not shown

on screen. However, you can also embed the password directly within your

connection string. For example: Server = localhost;Port=3306;uid=root;pwd=my_

password;database=gatewaymysql;.

6. From Database Provider, selectMySQL Data Provider.

7. Click Test Connection to test the data source.

8. ClickOK to save.

Oracle Database Examples

Connecting to Oracle requires the download and configuration of the Oracle Data Access

Components (ODAC) obtained directly from Oracle’s website. Follow the steps below to get

access to these drivers and files.

Smart Integration Connector Guide 43

Setup and Installation

1. Go to the latest web page for Oracle .NET and Visual Studio ODAC Downloads for Oracle

Database.

2. After installation, the ODP.NET Provider will display as an available Database Provider in

the utility when adding a new data source.

3. The connection string for Oracle databases can be set up to either reference or require a

locally defined tnsnames.ora file for the requested data sources.

Example Connection Strings:

l Oracle Data Provider for .NET: Data Source=oracletest;User
Id=OneStream1;Password=|password|;

l Oracle Data Provider without TNSNames.ora: Data Source=(DESCRIPTION=
(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=MyHost)(PORT=MyPort)))

(CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=MyOracleSID))); User

Id=myUsername;Password=|password|;

OracleClient Database Provider

Below is an example for setting up a OracleClient database provider.

Smart Integration Connector Guide 44

Setup and Installation

https://www.oracle.com/database/technologies/net-downloads.html
https://www.oracle.com/database/technologies/net-downloads.html

1. Click More next to Local Gateway Connections.

2. Click Add Item to add the data source.

3. Data Source Name: Sales_EMEA

4. Connection String: Data Source=oracletest;User Id=OneStream1;Password=|password|

5. Enter your Connection String Password.

NOTE: For security purposes, we recommend using the Connection String
Password field and the substitution variable to ensure the password is not shown

on screen. However, you can also embed the password directly within your

connection string. For example: Server = localhost;Port=3306;uid=root;pwd=my_

password;database=gatewaymysql;.

6. From Database Provider, selectOracleClient Data Provider.

7. Click Test Connection to test the data source.

8. ClickOK to save.

Oracle Data Provider for .NET

Below is an example for setting up a Oracle Data Provider for .NET.

1. Click More next to Local Gateway Connections.

2. Data Source Name: Sales_SouthAmerica

3. Connection String:
Data Source=oracletest;User Id=OneStream1;Password=|password|

4. Enter your Connection String Password.

Smart Integration Connector Guide 45

Setup and Installation

NOTE: For security purposes, we recommend using the Connection String
Password field and the substitution variable to ensure the password is not shown

on screen. However, you can also embed the password directly within your

connection string. For example: Server = localhost;Port=3306;uid=root;pwd=my_

password;database=gatewaymysql;.

5. From Database Provider, selectOracle Data Provider for .NET.

6. Click Add Item to add a new data source.

7. Click Test Connection to test the data source.

8. ClickOK to save.

PostgreSQL (Npgsql Data Provider)

Below is an example for setting up a PostGres database.

1. Click More next to Local Gateway Connections.

2. Click Add Item to add the data source.

3. Data Source Name: RevenueMgmtPostGres

4. Connection String: Server=localhost;Port=5432;Database=revmgt;User
Id=onestream;Password=|password|;

5. Enter your Connection String Password.

Smart Integration Connector Guide 46

Setup and Installation

NOTE: For security purposes, we recommend using the Connection String
Password field and the substitution variable to ensure the password is not shown

on screen. However, you can also embed the password directly within your

connection string. For example: Server = localhost;Port=3306;uid=root;pwd=my_

password;database=gatewaymysql;.

6. From Database Provider, select Npgsql Data Provider.

7. Click Test Connection to test the data source.

8. ClickOK to save.

OleDb Data Provider

Below is an example for setting up an Oracle database. This does not require additional download

and configurations.

1. Click More next to Local Gateway Connections.

2. Click Add Item to add the data source.

3. Data Source Name: Sales_Asia

4. Connection String: Provider=OraOLEDB.Oracle;Data Source=localhost:1521/XE;Initial
Catalog=myDataBase;User Id=myUsername;Password=|password|;

5. Enter your Connection String Password.

Smart Integration Connector Guide 47

Setup and Installation

NOTE: For security purposes, we recommend using the Connection String
Password field and the substitution variable to ensure the password is not shown

on screen. However, you can also embed the password directly within your

connection string. For example: Server = localhost;Port=3306;uid=root;pwd=my_

password;database=gatewaymysql;.

6. From Database Provider, selectOleDb Data Provider.

7. Click Test Connection to test the data source.

8. ClickOK to save.

Smart Integration Connector Guide 48

Setup and Installation

ODBC Data Provider

ODBC data sources can be defined (using a system DSN) to remove credentials from the

configuration file. For ODBC connections, most ODBC drivers will allow you to set up a system

DSN entry on the server, then the connection string in the gateway will be to only point to the DSN

entry. See Administer ODBC data sources for more information. Below is an example for setting

up an ODBC data source for Oracle.

1. Click More next to Local Gateway Connections.

2. Click Add Item to add the data source.

3. Data Source Name: Sales_Europe

4. Connection String: Driver={Microsoft ODBC for Oracle};Server=(DESCRIPTION=

(ADDRESS=(PROTOCOL=TCP)(HOST=199.199.199.199)(PORT=1523))(CONNECT_

DATA=(SID=dbName)));Uid=myUsername;Pwd=|password|;

5. Enter your Connection String Password.

NOTE: For security purposes, we recommend using the Connection String
Password field and the substitution variable to ensure the password is not shown

on screen. However, you can also embed the password directly within your

connection string. For example: Server = localhost;Port=3306;uid=root;pwd=my_

password;database=gatewaymysql;.

6. From Database Provider , selectOdbc Data Provider.

7. Click Test Connection to test the data source.

Smart Integration Connector Guide 49

Setup and Installation

https://support.microsoft.com/en-us/office/administer-odbc-data-sources-b19f856b-5b9b-48c9-8b93-07484bfab5a7

8. ClickOK to create the new source.

9. Click Save.

(Optional) Remove UserID and Passwords by
Integrated Security

You can remove UserIDs and Passwords from connection strings in Smart Integration Connector

if your organization has concerns over credential storage in the Smart Integration Connector

Gateway configuration file. This requires running the Windows Service under a Service Account
identity and using integrated security to connect to remote data sources, which eliminates local

storage of any plain text credentials. Additionally, ODBC data sources can be defined (using a

system DSN) to remove credentials from the configuration file.

Update the Local Gateway Connection String

1. Open yourOneStream Local Gateway Configuration.

2. Open a Local Gateway Connection.

3. Navigate to the Connection String and use an Integrated or Trusted Security string. For

example: Data Source=localhost,Initial Catalog=OneStream_GolfStreamDemo_

2022;Trusted_Connection=True;

Smart Integration Connector Guide 50

Setup and Installation

NOTE: Trusted Connections use the UserID and password you use to log into the
Windows Server.

NOTE: The example above is for SQL server. Trusted connections vary by Data
Provider type.

4. ClickOK.

5. Save your Data Source.

Smart Integration Connector Guide 51

Setup and Installation

Update Permissions on the OneStream Smart Integration
Connector Gateway Service

Next, you need to update the service to run as the user. If the service is not updated, the

connection does not update and errors will occur.

1. OpenWindows Services.

2. Navigate toOneStream Smart Integration Connector Gateway. The service should be
running.

3. Right-click and open Properties.

Smart Integration Connector Guide 52

Setup and Installation

4. Click the Log On tab. Typically, this will default to the Local System account.

IMPORTANT: Before moving to the next step, ensure that you have the
appropriate permissions and approvals from your IT Administrators to complete

the Log On change. The service account used will require local Administrative

rights to access resources on the Windows server, such as the machine certificate

store and private keys used for encryption. This account will also require the

appropriate permissions to access the database such as Microsoft SQL Server.

5. Change log on from Local System account to This account and enter your domain or
login that has access to the data source. Depending on how your SSO is configured, your

account could require your domain name, UserID, and password. Contact your IT

Administrator if you have questions about your account domain.

Smart Integration Connector Guide 53

Setup and Installation

6. Click Apply.

7. ClickOK.

8. Right-click and select Restart to restart and update the service.

Test the Updated Integrated Connection String

You should test your connection through a Data Adapter query to verify your access to Smart

Integration Connector. An alternate SQL Query to pulling the first 10-50 rows is sufficient. See

Data Adapters Example.

Microsoft Entra Authentication for Azure SQL

The ability to use Microsoft Entra using service principal authentication to access Azure SQL is

supported.

1. Open yourOneStream Local Gateway Configuration.

2. Open a Local Gateway Connection.

3. Enter a Data Source Name ofMicrosoftEntra.

4. Navigate to the Connection String and enter a connection string. Example:

Server=demo.database.windows.net; Authentication=Active Directory Service Principal;

Encrypt=True; Database=testdb; User Id=AppId; Password=|password|;

5. Enter your Connection String Password.

NOTE: For security purposes, we recommend using the Connection String
Password field and the substitution variable to ensure the password is not shown

on screen. However, you can also embed the password directly within your

connection string. For example: Server = localhost;Port=3306;uid=root;pwd=my_

password;database=gatewaymysql;.

Smart Integration Connector Guide 54

Setup and Installation

6. SelectMS Data SQL Provider as your Database Provider.

7. Click Test Connection to test the data source.

8. ClickOK.

9. Click Save.

Restart the Smart Integration Connector
Gateway
After communication has been verified, the following Windows Service needs to run to maintain

communication with the OneStream Cloud instance. By default, these services are set to start

after a Windows reboot. You can also manually start them using the Windows Service control

manager or the command line using the net start/net stop commands. If you are having issues

restarting the service, see Troubleshooting.

1. Open theOneStream Local Gateway Configuration.

2. Click Tools > Restart OneStream Smart Integration Connector Gateway.

Smart Integration Connector Guide 55

Setup and Installation

Load Balanced Local Gateway Servers
To create a load balanced environment, install the Smart Integration Connector Local Gateway

Server on a separate Windows Server. Load balanced environments allow for faster overall

results from data sources by:

l Distributing requests between servers

l Improving performance

l Providing a failover server

In a load balanced environment, consider the following:

l Incoming connections are balanced between the available Local Gateway Servers.

l The first Local Gateway Server to establish a connection to the Relay is displayed in the

Active Local Gateway Server Computer Name field in the Smart Integration Connector
Admin setup.

l The number of active gateways is displayed in the Instance Count field.

Smart Integration Connector Guide 56

Setup and Installation

NOTE: To set up local gateway servers for multiple environments, you must create a
new server for each environment by following the steps in Local Gateway Server

Installation.

Create a Load Balanced Local Gateway Server

To create a load balanced Local Gateway Server:

1. On the first Windows Server, complete installation on the initial Local Gateway Server and

verify all data connections transfer data.

2. After all connections have been verified on the first Windows Server export the

configuration.

a. Open theOneStream Local Gateway Configuration.

b. Go to Tools > Export Configuration for Backup Gateway Server.

c. Choose the location and select Save.

3. On the secondWindows Server in your environment, install theOneStream Smart
Integration Connector Local Gateway Server
(OneStreamSmartIntegrationConnectorGateway-#.#.#.#####.msi).

NOTE: If you are using custom DLLs, SAP, or referenced DLLs, you must copy

the existing Referenced Assemblies Folder. Locations must be in sync and in the

same location on the primary server. See Smart Integration Connector Settings.

4. On the second server, perform the following steps:

Smart Integration Connector Guide 57

Setup and Installation

a. Open theOneStream Local Gateway Configuration.

b. Go to Tools > Import Configuration from Primary Gateway Server.

i. Choose the location of the export file and select Open.

CAUTION: You will overwrite the existing local gateway
configuration. If you use Connection String Passwords, you will need

to reenter a connection string password.

CAUTION: If you installed a custom database driver, you must install

the customer database driver on the backup gateway server.

ii. Click Local Gateway Connections.

iii. Select a Data Source and the Connection String Passwords.

iv. SelectOK to provide a new Connection string.

v. Delete the encrypted text and replace it with a valid connection string from the

primary server.

vi. SelectOK to encrypt the connection string and close the dialog box.

vii. Repeat steps above for all the remaining data sources.

viii. ClickOK to close the Local Gateway Connections.

ix. Click Save to save the Local Gateway Configuration.

x. Click Yes to restart the service.

xi. Test the Smart Integration Connector Local Gateway Server in OneStream.

Smart Integration Connector Guide 58

Setup and Installation

5. Verify the Instance Count is 2 when both the initial and second servers are running in the
OneStreamWindows application. The first Local Gateway Server to establish a connection

to the Relay is displayed in the Active Local Gateway Server Computer Name field

Smart Integration Connector Guide 59

Setup and Installation

Define Custom Database Connections in
OneStream System Configuration Setup
Now that the connection is set up and communicating with the Smart Integration Connector

Gateway, the final step is to set up the location of the remote data source in OneStream. To

continue adding the Custom Database Connection, you must assign a user to the

ManageSystemConfiguration role.

1. Go to System > Administration > System Configuration.

2. Select Application Server Configuration > Database Server Connections.

3. Select Create Item to create a new Custom database server connection.

NOTE: If the only fields displayed are Name and External Database properties,
verify that the current user is assigned to the ManageSystemConfiguration role.

4. Enter the Name of the Database Server Connection.

5. For Database Provider Type, selectGateway.

Smart Integration Connector Guide 60

Setup and Installation

6. TheGateway Name drop-down menu will be populated with a list of configured gateways.
Select the Gateway.

7. After the Gateway is selected, the Data Source Name drop-down menu populates with a
list of the Local Gateway Server Database Connections.

8. Select a Database Connection from the drop-down menu.

NOTE: If the remote data source is not displayed or the Gateway is offline, you
can select Custom to allow the data source to be manually specified. It is advised

to wait up to five minutes for the Gateway to populate first.

9. Click Save to complete the configuration.

10. Verify the custom database connection is under Custom.

Smart Integration Connector Guide 61

Setup and Installation

Smart Integration Connector Guide 62

Setup and Installation

Smart Integration Additional
Settings

Local Application Data Settings
Additional application configurations can be applied within the Local Application Data Settings.

Once you open a configuration file within the utility, open Local Application Data Settings.

Smart Integration Connector Guide 63

Smart Integration Additional Settings

You can:

l Reference a location to additional DLLs that will be used in remote business rules.

l Adjust the Maximum Records to Return. These are optional and are only defined if needed

or if further tuning is necessary by a consultant or as instructed by Support.

l Store Configuration Parameters and associated values.

Referenced Assemblies Folder

The Referenced Assemblies Folder specifies the location of customer-supplied DLLs that can be

referenced when remote Smart Integration Functions are compiled and executed. You will need to

add the DLL name to the Smart Integration Functions Referenced Assemblies property. The

default value is C:\Program Files\OneStream Software\OneStream Gateway\Referenced

Assemblies.

NOTE: If you are integrating SAP with ERPConnect, add ERPConnect and the required

DLLs to the Referenced Assemblies folder and C:\Windows\System32 folder per

instructions. Refer to Support for SAP Integration.

Smart Integration Connector Guide 64

Smart Integration Additional Settings

Allow Remote Code Execution

The Smart Integration Connector Capabilities introduce additional business rule APIs (BR APIs)

to allow for execution and management of remote business rules inside the context of the Smart

Integration Connector gateway. These rules are transported using https to the Smart Integration

Connector local gateway, compiled locally, executed, and the results returned to the caller for

further processing. They provide a mechanism for complex drill backs, data processing scenarios,

or to invoke remote Web APIs hosted in your network. Set to True by default.

Web API Bound Port

The port that Smart Integration Connector uses to communicate with the internal API.

Maximum Records to Return when Paging

Defaults to 1,000,000 and defines the number of rows to return per page/block to OneStream

APIs. This value is used only when greater than the "Row Count to Begin Paging Operations"

rows are returned from a query. Example: If the query returns 3 million rows and Row Count to

Begin Paging is set to 1 million, there would be 3 blocks of 1 million rows returned to OneStream.

NOTE: Maximum Records to Return when Paging, Maximum Records to Return, and

Row Count to Begin Paging Operations are optional and should only be applied by a

OneStream consultant or OneStream Support.

Maximum Records to Return

Defaults to 5,000,000 and is the maximum number of rows that can be returned from any one

query.

Smart Integration Connector Guide 65

Smart Integration Additional Settings

The maximum recommended number of records to return is 5 million and is the default. Additional

RAM/CPU resources would be required on the Smart Integration Connector Gateway Server and

on the remote database server to surface large quantities of data. If this limit is exceeded, you will

receive a "Smart Integration Connector Remote Query" error.

NOTE: Maximum Records and Row Counts Settings: When large data volumes are

returned (over 1,000,000 rows), to maintain performance and reliability, Smart

Integration Connector automatically transfers the data in pages.

NOTE: Smart Integration Connector has a threshold limit of 5 million rows and 5GB.

NOTE: It is a best practice that you review any queries that return more than 1 million

rows with your Database Administrator, because additional tuning may be

required. Tuning these queries will improve performance, reduce resource usage, and

make themmore efficient.

Smart Integration Connector Guide 66

Smart Integration Additional Settings

Row Count to Begin Paging Operations

Defaults to 1,000,000 and is the number of rows returned before the dataset is returned through

pages/blocks.

Local Configuration Parameters

This is where you can set key value pairs, such as Web API keys, usernames, and passwords,

that can be referenced from business rules. These key value pairs are defined as Configuration

Parameter Name and Configuration Parameter Value.

For example, the Configuration Parameter Name is SFTP_PASSWORD. Sensitive information,

such as the password, is stored in the Configuration Parameter Value on the Local Gateway
Server and does not need to be stored in the OneStreamWindows Application.

NOTE: Configuration Parameter Values are masked and encrypted by default. When

setting up the parameter, you will have the option of always showing the parameter in

plain text.

Then, in a business rule, you can reference the Configuration Parameter Name and do not need

to know the password or other sensitive information that is stored in the Configuration Parameter

Value. For example, in the following business rule the sftpPassword Configuration Parameter

Name is referenced. The GetSmartIntegrationConfigValue API can be used in a Smart Integration

Function to reference the Configuration Parameter Name, which may be needed in a business

rule to access a local data source.

Smart Integration Connector Guide 67

Smart Integration Additional Settings

Dim passwordString As String = APILibrary.GetSmartIntegrationConfigValue("SFTP_PASSWORD")

Log Settings
The service uses Serilog for application-level logging and exposes options for controlling naming

convention, growth limits, and retention details. For example you can change the verbosity of log

messages by changing theminimum-level setting from Verbose to Informational. If a

catastrophic error happens, you can check the Windows event logs to review the errors. You can

edit the Log Settings from theOneStream Local Gateway Configuration Utility.

Click to access Log Settings.

Smart Integration Connector Guide 68

Smart Integration Additional Settings

l Log Level descriptions:

o Verbose: The noisiest level, rarely (if ever) enabled for a production application.

o Debug: Used for internal system events that are not necessarily observable from the

outside, but useful when determining how something happened.

o Information: Used to describe things happening in the system that correspond to its

responsibilities and functions. Generally, these are the observable actions the

system can perform. This is recommended for production environments and is the

default setting upon installation.

o Warning: Service is degraded, endangered, or may be behaving outside of its
expected parameters.

o Error: Logging of situations where functionality is unavailable or a recoverable error
condition occurred.

o Fatal: Only the most critical level items would be logged, requiring immediate
attention.

l File Size Limit in Bytes: The maximum size for the log file, in bytes, before creating a new

file for the day. The default is 20 MB.

l Roll On File Size Limit: When a log file reaches the specified number of bytes, a new log

file is generated.

l Retained File Count Limit: Number of log files to retain. If logs do not exceed the limit in
bytes (one file/day), this would allow for the configured value (with 40 days being the

default) of log retention. If the Smart Integration Service is used heavily and log files are set

to higher levels of verbosity, this could result in fewer days of log retention. Ensure that the

growth rate and retention periods align with your organizational requirements.

The default location for log files is:

%programdata%\OneStream Software\OneStreamGatewayService\Logs.

Smart Integration Connector Guide 69

Smart Integration Additional Settings

NOTE: The log file's output has been updated to reflect the enhanced performance and
reliability of multithreaded or parallel processing for larger payloads since the Platform

Version v8.4 update.

Smart Integration Connector Guide 70

Smart Integration Additional Settings

Advanced Networking and
Whitelisting
Smart Integration Connector requires outbound traffic over port 443 to function. If you restrict

outbound traffic over 443 then whitelisting outbound traffic to Azure Relay Service will be required.

Smart Integration Connector does not require any inbound access rules to function.

Restrict Traffic to the Azure Relay
You can block or restrict traffic to your Azure relay to only allow certain IP ranges to connect.

1. From the OneStreamWindows Application client go to System > Administration > Smart
Integration Connector > Relay.

2. Select IPv4 Whitelist.

3. Enter IPv4 compatible IP (XXX.XXX.XXX.XXX) or CIDR addresses

(XXX.XXX.XXX.XXX/XX) separated by a semi colon in the IPv4 Whitelist dialog box.

Smart Integration Connector Guide 71

Advanced Networking and Whitelisting

NOTE: IPv6 addresses are not currently supported.

NOTE: Do not include any extra spaces for characters.

4. Restart your Local Gateway Service.

Whitelist Outbound Traffic to Azure Relay
Service from your Firewall
Allow outbound traffic using a wildcard domain to the Azure Relay Service (best practice). If the

firewall does not allow wildcards, use the fully qualified domain names for your specific Azure

Relay namespaces.

NOTE: For additional information, see Azure Relay WCF and Hybrid Connections DNS

Support.

Smart Integration Connector Guide 72

Advanced Networking and Whitelisting

https://techcommunity.microsoft.com/t5/messaging-on-azure-blog/azure-relay-wcf-and-hybrid-connections-dns-support/ba-p/370775
https://techcommunity.microsoft.com/t5/messaging-on-azure-blog/azure-relay-wcf-and-hybrid-connections-dns-support/ba-p/370775

Allow Traffic using Wildcard Domain (Best Practice)

To allow traffic using a wildcard domain (Microsoft Recommended best practice), add

*.servicebus.windows.net to the firewall rules permitting port 443 outbound.

Allow Traffic using IP addresses (Not Recommended)

To allow traffic using fully qualified domain names to the firewall rules:

1. Look up the IP addresses used by the Azure Relay namespace. The IP addresses can be

returned by using this script.

2. Add the IP addresses to the firewall rules permitting port 443 outbound.

3. Frequently monitor the IP addresses for changes. Update the IP addresses in the firewall

rules when there are IP address changes. The IP addresses can be returned by using this

script.

NOTE: Up to 20% of the IP address can change in the span of a month. To ensure

that Smart Integration Connector continues to operate, you will need to frequently

monitor if these IPs change and adjust your firewall accordingly.

Smart Integration Connector Guide 73

Advanced Networking and Whitelisting

https://github.com/Azure/azure-relay-dotnet/blob/dev/tools/GetNamespaceInfo.ps1
https://github.com/Azure/azure-relay-dotnet/blob/dev/tools/GetNamespaceInfo.ps1

Use Smart Integration Connector
You can use Smart Integration Connector to access data from your Local Gateway Connection

Data Sources or through Direct Connections. This section provides examples of how to use Smart

Integration Connector:

l Data Adapters Example

l SQL Table Editor Example

l Grid View Example

l Perform a Drill Back

l Perform aWrite Back

l Support for SFTP

l Transfer Files from Local FileShare

l Obtain Data through aWebAPI

l Send Emails through Smart Integration Direct Connections

l Support for DLL Migration

Data Adapters Example
1. Go to Application > Presentation >Workspaces > [choose Workspace] > [choose

Maintenance Unit] > Data Adapters.

2. Create or select an existing data adapter.

Smart Integration Connector Guide 74

Use Smart Integration Connector

3. Verify that the Database Location is External and the External Database Connection is
the custom connection that you defined earlier.

4. Enter a valid SQL Query.

5. Click Test Data Adapter to test the Data Adapter and view the results.

SQL Table Editor Example
The following use case describes how to send a query after establishing a connection.

1. Go to Application > Presentation > Workspaces > [choose Workspace] > [
Maintenance Unit] > [choose Maintenance Unit] > Components > SQL Table Editor.

2. Create Dashboard Component or open a SQL Table Editor.

3. Choose SQL Table Editor and select OK.

Smart Integration Connector Guide 75

Use Smart Integration Connector

4. Verify the following:

l Database Location is External,

l External Database Connection is the custom connection that you defined earlier,

l Table Name is defined as the table you want to return data from.

5. Open the associated dashboard and run the query. The OneStream Smart Integration

Connector will connect to the external database. If it connects correctly, the query will

populate.

Smart Integration Connector Guide 76

Use Smart Integration Connector

NOTE: If you plan on modifying data with SQL Table Editor using Smart Integration
Connector, then you will need to write back data with a custom business rule using the

Execute Dashboard Extender Business Rule feature under the Save Data Server
Task action.

Grid View Example
1. Go to Application > Presentation >Workspaces > [choose Workspace] > [

Maintenance Unit > [choose Maintenance Unit] > Components >Grid View.

2. Create Dashboard Component or open a grid view.

Smart Integration Connector Guide 77

Use Smart Integration Connector

3. Choose Grid View and select OK.

4. Configure the grid to use the data adapter.

5. Run the associated dashboard to see the data.

Perform a Drill Back
The following snippet describes how to load data from a local gateway connection data source

and how to perform a drill back. The example below has been updated from the Standard SQL

Connectors business rule. If you do not have the Snippet Editor with the OneStream Application,

you can find the Snippet Editor on the Solution Exchange.

Smart Integration Connector Guide 78

Use Smart Integration Connector

1. Download and install the Snippet Editor from Solution Exchange.

2. Navigate to Application > Tools > Business Rules.

3. Expand Connector and select a Business Rule.

4. Navigate to Snippets > SQL Connector > Standard SQL Connectors.

5. Copy the Sample Business Rule.

Smart Integration Connector Guide 79

Use Smart Integration Connector

6. Enter the connection name. In this example, “Northeast Sales” is the Gateway Connection

Name as defined in the application configuration.

' Create a Connection string to the External Database (prior to using the gateway)
Private Function GetConnectionString(ByVal si As Sessioninfo, ByVal globals As
BRGlobals, ByVal api As Transformer) As String
Try
' Named External Connection
' ---
Return "Revenue Mgmt System"
Catch ex As Exception
Throw ErrorHandler.LogWrite(si, New XFException(si, ex))
End Try
End Function
' Create a Connection string to the External Database (using the Gateway)
Private Function GetConnectionString_Gateway(ByVal si As Sessioninfo, ByVal globais As
BRGlobals, ByVal api As Transformer) As String
Try
' Named External Connection - Gateway
' ---
Return "Northeast Sales"
Catch ex As Exception
Throw ErrorHandler.LogWrite(si, New XFException(si, ex))
End Try
End Function

7. Enter the drill back information to your database.

If args.DrillCode.Equals(StageConstants.TransformationGeneral.DrillCodeDefaultValue,
StringComparison.InvariantCulturelgnoreCase) Then
' Source GL Drill Down
 drillTypes.Add(New DrillBackTypeInfo(ConnectorDrillBackDisplayTypes.FileShareFile,
New NameAndDesc("InvoiceDocument","Invoice Document")))
 drillTypes.Add(New DrillBackTypeInfo(ConnectorDrillBackDisplayTypes.DataGrid, New
NameAndDesc("MaterialTypeDetail","Material Type Detail")))
 drillTypes.Add(New DrillBackTypeInfo(ConnectorDrillBackDisplayTypes.DataGrid, New
NameAndDesc("MaterialTypeDetail_Gateway","Material Type Detail (Smart Integration)")))

8. Edit the level of drill back information returned.

Smart Integration Connector Guide 80

Use Smart Integration Connector

Example: This example shows previously existing code
that leverages a VPN based SQL connection and the

Gateway based method shown in the second "Else If"

block.

Else If args.DrillBackType.NameAndDescription.Name.Equals("MaterialTypeDetail",
StringComparison.InvariantCultureIgnoreCase) Then
' Level 1: Return Drill Back Detail
Dim dri1lBackSQL As String - GetDrillBackSQL_Ll(si, globais, api, args)
Dim drillBackInfo As New DrillBackResultInfo
 drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.OataGrid
 drillBackInfo.DataTable = api.Parser.GetXFDataTableForSQLQuery(si,
DbProviderType.SqlServer, connectionstring. True, drillBackSQL, False, args.PageSize,
args.PageNumber)
Return drillBacklnfo
Else If args.DrillBackType.NameAndDescription.Name.Equals("MaterialTypeDetail_Gateway",
StringComparison.lnvariantCultureIgnoreCase) Then
' Level 1: Return Drill Back Detail
Dim drillBackSQL As String = GetDrillBackSQL_Ll(si, globais, api, args)
Dim drillBackInfo As New DrillBackResultInfo
 drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.OataGrid
 drillBackInfo.DataTable = api.Parser.GetXFDataTableForSQLQuery(si, DbProviderType.Gateway,
connectionstring_gateway. True, drillBackSQL, False, args.PageSize, args.PageNumber)
Return drillBacklnfo

Perform a Write Back
You can perform a write back using Smart Integration Connector leveraging the defined

credentials to the local gateway dataSource at the Smart Integration Connector Gateway. If the

credentials have permission to insert, update, and/or delete records in a remote dataSource, a

OneStream business rule could be leveraged to write-back, update, and/or delete data as needed

to support a financial process.

Example: The following example shows how to insert rows

and columns to a Smart Integration Connector SQL remote

database. Other types of databases (ODBC and OLEDB) are

not compatible with this example.

Smart Integration Connector Guide 81

Use Smart Integration Connector

Imports System
Imports System.Collections.Generic
Imports System.Data
Imports System.Data.Common
Imports System.Globalization
Imports System.IO
Imports System.Linq
Imports System.Windows.Forms
Imports Microsoft.VisualBasic
Imports OneStream.Finance.Database
Imports OneStream.Finance.Engine
Imports OneStream.Shared.Common
Imports OneStream.Shared.Database
Imports OneStream.Shared.Engine
Imports OneStream.Shared.Wcf
Imports OneStream.Stage.Database
Imports OneStream.Stage.Engine
Namespace OneStream.BusinessRule.Extender.SIC_BulkCopyExample

Public Class MainClass
Public Function Main(ByVal si As SessionInfo, ByVal globals As BRGlobals, ByVal api

As Object, ByVal args As ExtenderArgs) As Object
Try

' SIC Gateway name
Dim sicGatewayName As String = "Northeast_HQ"

' SIC remote rule
Dim sicRemoteRule As String = "update_DB"

' SIC remote rule function
Dim sicRemoteRuleFunction As String = "RunOperation"
' Create and populate DataTable
Dim dt As New DataTable()

 dt.Columns.Add("Scenario", GetType(String))
 dt.Columns.Add("Time", GetType(String))
 dt.Columns.Add("Entity", GetType(String))
 dt.Columns.Add("Account", GetType(String))
 dt.Columns.Add("Amount", GetType(Double))
 dt.Rows.Add("Actual", "2023M3", "Houston Heights", "Net Sales", 100.25)
 dt.Rows.Add("Actual", "2023M3", "South Houston", "Net Sales", 1230.66)

' Compress data table before passing into remote business rule
Dim dtCompress As CompressionResult = CompressionHelper.CompressJsonObject
(Of DataTable)(si, dt, XFCompressionAlgorithm.DeflateStream)

Dim dtObj(2) As Object ' Create object to store arguments for remote
business rule
 dtObj(0) = dtCompress ' compressed datatable
 dtObj(1) = "SIC_WriteBack" ' remote database table name
 dtObj(2) = "RevenueMgmt" ' remote data source name

' Execute remote business rule to bulk copy to target table
Dim bulkRemoteResults As RemoteRequestResultDto

 =BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, sicRemoteRule,
 dtObj, sicGatewayName,sicRemoteRuleFunction,String.Empty, False, 600)

Smart Integration Connector Guide 82

Use Smart Integration Connector

' Get result status
If bulkRemoteResults.RemoteResultStatus <>

 RemoteMessageResultType.RunOperationReturnObject Then ' Check if successful
' Failed, do something

 BRAPi.ErrorLog.LogMessage(si,"Failed with status:" & bulkRemoteResults.
 RemoteResultStatus.ToString)

End If

' Get returned message
Dim returnedMsg As String = CompressionHelper.InflateJsonObject(Of String)
(si,bulkRemoteResults.resultDataCompressed)

 BRAPi.ErrorLog.LogMessage(si,returnedMsg)

Return Nothing
Catch ex As Exception

Throw ErrorHandler.LogWrite(si, New XFException(si, ex))
End Try

End Function
End Class

End Namespace

The Extensibility Rule above calls the following Smart Integration Function:

Imports System
Imports System.Collections.Generic
Imports System.Data
Imports System.Data.Common
Imports System.Globalization
Imports System.IO
Imports System.Linq
Imports System.Data.SqlClient
Imports OneStream.Shared.Common
Imports OneStreamGatewayService
Namespace OneStream.BusinessRule.SmartIntegrationFunction.SIC_Functions

Public Class MainClass

' Function to bulk copy a compressed data table to a SQL database table
' Pass in compressed data table, database table name and data source name
Public Shared Function RunOperation(dtCompress As CompressionResult,tablename

As String,
 dataSource As String) As String

' --

' Get SQL connection string
Dim connString As String = APILibrary.GetRemoteDataSourceConnection(dataSource)

' Inflate compressed datatable
Dim dt As DataTable = CompressionHelper.InflateJsonObject(Of DataTable)

Smart Integration Connector Guide 83

Use Smart Integration Connector

(New SessionInfo,dtCompress)

If dt IsNot Nothing AndAlso dt.Rows.Count > 0 Then
' Check data table has been created and is populated

' Create sql connection to DWH
Using sqlTargetConn As SqlConnection = New SqlConnection(connString)

 sqlTargetConn.Open ' Open connection

Using bulkCopy = New SqlBulkCopy(sqlTargetConn)

 bulkCopy.DestinationTableName = tableName ' DWH table
 bulkCopy.BatchSize = 5000
 bulkCopy.BulkCopyTimeout = 30

 bulkCopy.WriteToServer(dt) ' Bulk copy data table to database table

End Using

End Using

Else
Throw New Exception("Problem uncompressing data in SIC gateway")

End If

Return $"{dt.Rows.Count} rows bulk inserted into table {tableName}"

End Function

End Class
End Namespace

Support for SFTP
Smart Integration Connector provides support for connecting to SFTP servers to send and

retrieve files. Perform the steps in the following sections to establish a connection and then send

and retrieve files.

IMPORTANT: It is best practice to utilize SSH.NET, which is included with Smart
Integration Connector, for Secure File Transfer Protocol (SFTP) tasks.

Smart Integration Connector Guide 84

Use Smart Integration Connector

IMPORTANT: As of version 9.1, WinSCP is no longer included with Smart Integration

Connector. For current WinSCP users, it is a recommended best practice to transition

your SFTP operations to the SSH.NET library. If you want to continue to use WinSCP,

you will need to addWinSCP to your referenced assemblies folder and reference

WinSCP from your remote business rules. See Support for DLL Migration.

NOTE: You must have an SFTP server available on a port. The port must be allowed for

inbound and outbound connections on the Local Gateway Server. For this example, we

have used port 22.

1. Log in to OneStream.

2. Navigate to System > Administration > Smart Integration Connector.

3. Create a New Connection and fill out all of the corresponding details for your Connection
and the Gateway Server.

4. From Connection Type, select Direct Connection / Port Forwarding.

5. For Bound Port at Gateway, enter 22.

6. For Remote Gateway Host, enter the IP address or resolvable host name of the machine

where your SFTP server is located.

Smart Integration Connector Guide 85

Use Smart Integration Connector

7. For Bound Port in OneStream, select (Auto Assigned) (default and recommended
setting) or Enter Port Manually. See Smart Integration Connector Terms for additional
information.

l (Auto Assigned) (default and recommended setting) to allow the OneStream

application to automatically assign an unused port number. When the Direct

Connection is created, the port number is shown in the connection settings.

l Enter Port Manually: Enter an unused port number. The port number must be
greater than 1024 and less than 65535.

8. ClickOK.

9. Copy the Connection to theOneStream Smart Integration Connector Local Gateway
Server Configuration.

Smart Integration Connector Guide 86

Use Smart Integration Connector

10. Save the Local Gateway Server configuration and restart the Smart Integration Connector

Gateway service.

Example: Here is an example of how you can upload and

download files through an SFTP extensibility rule.

C# SFTP Example

Below you can find the C# example for STFP.

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Common;
using System.Globalization;
using System.IO;
using System.Linq;
using Microsoft.CSharp;
using OneStream.Finance.Database;
using OneStream.Finance.Engine;
using OneStream.Shared.Common;
using OneStream.Shared.Database;
using OneStream.Shared.Engine;
using OneStream.Shared.Wcf;
using OneStream.Stage.Database;
using OneStream.Stage.Engine;
using Renci.SshNet;
namespace OneStream.BusinessRule.Extender.SFTP_SSH_C
{

public class MainClass
{

public object Main(SessionInfo si, BRGlobals globals, object api, ExtenderArgs args)
{

try
{

// --
// SSH.NET EXAMPLES
// --

// Setup SSH.NET session options from values in Cloud Administration Tools
(CAT) Key Management - Secrets

var username = BRApi.Utilities.GetSecretValue(si, "SFTP-UserName");
var password = BRApi.Utilities.GetSecretValue(si, "SFTP-Password");
var authenticationMethod = new PasswordAuthenticationMethod(username,

password);
var connectionInfo = new ConnectionInfo("localhost", username,

authenticationMethod);

Smart Integration Connector Guide 87

Use Smart Integration Connector

// Get the filepath - BatchHarvest in this example is File Share /
Applications / GolfStreamDemo_v36 / Batch / Harvest

var fileDNpath = BRApi.Utilities.GetFileShareFolder(si,
FileShareFolderTypes.BatchHarvest, null);

var fileSFTPpath = Path.Combine(fileDNpath, "SFTP_TEST_DOWNLOAD_" +
DateTime.UtcNow.ToString("MM-dd-yyyy-HHmmss") + ".txt");

var fileSCPpath = Path.Combine(fileDNpath, "SCP_TEST_DOWNLOAD_" +
DateTime.UtcNow.ToString("MM-dd-yyyy-HHmmss") + ".txt");

// SFTP Example
using (var sftpClient = new SftpClient(connectionInfo))

{
 sftpClient.Connect();

using (var downloadStream = new FileStream(fileSFTPpath,
FileMode.OpenOrCreate, FileAccess.Write, FileShare.None))

{
 sftpClient.DownloadFile("SFTP_TEST_DOWNLOAD.txt", downloadStream);
 }
 }

// SCP Example
using (var scpClient = new ScpClient(connectionInfo))
{

 scpClient.Connect();
 scpClient.Download("SFTP_TEST_DOWNLOAD.txt", new FileInfo(fileSCPpath));
 }

return null;
 }

catch (Exception ex)
{

throw ErrorHandler.LogWrite(si, new XFException(si, ex));
 }
 }
 }
}

VB STFP Example

Below you can find the VB example for STFP.

Imports System
Imports System.Collections.Generic
Imports System.Data
Imports System.Data.Common
Imports System.Globalization
Imports System.IO
Imports System.Linq
Imports System.Windows.Forms
Imports Microsoft.VisualBasic
Imports OneStream.Finance.Database

Smart Integration Connector Guide 88

Use Smart Integration Connector

Imports OneStream.Finance.Engine
Imports OneStream.Shared.Common
Imports OneStream.Shared.Database
Imports OneStream.Shared.Engine
Imports OneStream.Shared.Wcf
Imports OneStream.Stage.Database
Imports OneStream.Stage.Engine
Imports Renci.SshNet
Namespace OneStream.BusinessRule.Extender.SFTP_SSH

Public Class MainClass
Public Function Main(ByVal si As SessionInfo, ByVal globals As BRGlobals, ByVal api

As Object, ByVal args As ExtenderArgs) As Object
Try

' --
' SSH.NET EXAMPLES
' --

' Setup SSH.NET session options from values in Cloud Administration Tools
(CAT) Key Management - Secrets

Dim username As String = BRApi.Utilities.GetSecretValue(si, "SFTP-UserName")
Dim password As String = BRApi.Utilities.GetSecretValue(si, "SFTP-Password")
Dim authenticationMethod = New PasswordAuthenticationMethod(username,

password)
Dim connectionInfo = New ConnectionInfo("localhost", username,

authenticationMethod)

'Get the filepath - BatchHarvest in this example is File Share /
Applications / GolfStreamDemo_v36 / Batch / Harvest

Dim fileDNPath As String = BRAPi.Utilities.GetFileShareFolder(si,
FileShareFolderTypes.BatchHarvest, Nothing)

Dim fileSFTPpath = Path.Combine(fileDNpath, "SFTP_TEST_DOWNLOAD_" &
DateTime.UtcNow.ToString("MM-dd-yyyy-HHmmss") & ".txt")

Dim fileSCPpath = Path.Combine(fileDNpath, "SCP_TEST_DOWNLOAD_" &
DateTime.UtcNow.ToString("MM-dd-yyyy-HHmmss") & ".txt")

' SFTP Example
Using sftpClient = New SftpClient(connectionInfo)

 sftpClient.Connect()
Using downloadStream = New FileStream(fileSFTPpath, FileMode.OpenOrCreate,

FileAccess.Write, FileShare.None)
 sftpClient.DownloadFile("SFTP_TEST_DOWNLOAD.txt", downloadStream)

End Using
End Using

' ' SCP Example
Using scpClient As New ScpClient(connectionInfo)

 scpClient.Connect()
 scpClient.Download("SFTP_TEST_DOWNLOAD.txt", New FileInfo(fileSCPpath))

End Using
Return Nothing
Catch ex As Exception
Throw ErrorHandler.LogWrite(si, New XFException(si, ex))
Return Nothing
End Try
End Function

End Class
End Namespace

Smart Integration Connector Guide 89

Use Smart Integration Connector

Transfer Files from Local FileShare
You can use a Data Management job to move files Smart Integration Connector from a local

FileShare. To do this, you build an extender business rule and call it through a data management

job. This extender business rule will call a Smart Integration Function (remote function) and obtain

the results.

Step 1 - Setup the Remote Server / Remote Share

To get started, setup the Smart Integration Function:

1. Navigate to Application > Tools > Business Rules.

2. Open the Smart Integration Function folder.

3. Create a new business rule (for example, TestFileRead).

4. Copy and paste the following business rule code snippet.

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Common;
using System.Globalization;
using System.IO;
using System.Linq;
namespace OneStream.BusinessRule.SmartIntegrationFunction.TestFileRead
{
public class MainClass
{
public byte[] RunOperation(string year)
{
string fname = @"c:\temp\hw_" + year + ".csv";
byte[] buffer = System.IO.File.ReadAllBytes(fname);
return buffer;
 }
public byte[] GetOtherFileData(string year)
{
string fname = @"c:\temp\zw_" + year + ".csv";
byte[] buffer = System.IO.File.ReadAllBytes(fname);
return buffer;
 }
public bool DeleteOldFileData(string year)

Smart Integration Connector Guide 90

Use Smart Integration Connector

{
string fname = @"c:\temp\zw_" + year + ".csv";
try
{
 System.IO.File.Delete(fname);
return true;
 }
catch (IOException)
{
return false;
 }
 }
 }
}

Step 2 - Pull file from Extender Business Rule
1. Navigate to Application > Tools > Business Rules.

2. Open the Extensibility Rules folder.

3. Create a new business rule (for example, ProcessRemoteFileData).

4. Copy and paste the following business rule code snippet.

Imports System
Imports System.Data
Imports System.Data.Common
Imports System.IO
Imports System.Collections.Generic
Imports System.Globalization
Imports System.Linq
Imports Microsoft.VisualBasic
Imports System.Windows.Forms
Imports OneStream.Shared.Common
Imports OneStream.Shared.Wcf
Imports OneStream.Shared.Engine
Imports OneStream.Shared.Database
Imports OneStream.Stage.Engine
Imports OneStream.Stage.Database
Imports OneStream.Finance.Engine
Imports OneStream.Finance.Database
Namespace OneStream.BusinessRule.Extender.ProcessRemoteFileData

Public Class MainClass
Public Function Main(ByVal si As SessionInfo, ByVal globals As BRGlobals,

ByVal api As Object, ByVal args As ExtenderArgs) As Object
Try

Smart Integration Connector Guide 91

Use Smart Integration Connector

Dim stepNumber As String = "1"

If (Not args.NameValuePairs Is Nothing) Then
' Extracting the value from the parameters collection
If (args.NameValuePairs.Keys.Contains("step")) Then

 stepNumber = args.NameValuePairs.Item("step")
End If

 BRApi.ErrorLog.LogMessage(si, "File Processing Step: " & stepNumber)
End If

Select Case stepNumber

Case Is = "1"
 GetData(si)

Return Nothing

Case Is = "2"
 CleanupData(si)

Return Nothing

End Select

Catch ex As Exception
Throw ErrorHandler.LogWrite(si, New XFException(si, ex))

End Try

Return Nothing
End Function

Public Sub CleanupData(ByVal si As SessionInfo)

Dim argTest(0) As Object
 argTest(0) = "2023"

' Here we are telling it to specifically call
Dim objRemoteRequestResultDto As RemoteRequestResultDto =

BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "TestFileRead", argTest,
"entergatewayname", "DeleteOldFileData")

If (objRemoteRequestResultDto.RemoteResultStatus =
RemoteMessageResultType.RunOperationReturnObject) Then

' The delete method returns a true/false return type
Dim result As Boolean
' ObjectResultValue introduced in v7.4 to simplify obtaining the

return value from a method that doesn't return a
' Dataset/Datatable

 result = objRemoteRequestResultDto.ObjectResultValue

Dim objRemoteRequestResultDtoCached As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayCachedBusinessRule(si, "TestFileReadCache", argTest,
"entergatewayname", String.Empty)

 BRApi.ErrorLog.LogMessage(si, "File Deleted: " & result)

Smart Integration Connector Guide 92

Use Smart Integration Connector

Else
If (Not (objRemoteRequestResultDto.remoteException Is Nothing)) Then
Throw ErrorHandler.LogWrite(si, New XFException(si,

objRemoteRequestResultDto.remoteException))
End If

End If
End Sub

Public Sub GetData(ByVal si As SessionInfo)

' Demonstrating how to pass parameters
' We create an object array that matches the number of parameters
' To the remote function. In this case, we have 1 parameter that is a

string
Dim argTest(0) As Object

 argTest(0) = "2023"

' This is where you can allow caching of the remote function. We are
passing in true at the end to force the cache to be updated

' We are also allowing the function to run for 90 seconds.
' String.empty means this will look for a remote function/method

called "RunOperation"
Dim objRemoteRequestResultDto As RemoteRequestResultDto =

BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "TestFileRead", argTest,
"entertestconnection", String.Empty,"TestFileRead", True, 90)

If (objRemoteRequestResultDto.RemoteResultStatus =
RemoteMessageResultType.RunOperationReturnObject) Then

Dim bytesFromFile As Byte()
 bytesFromFile = objRemoteRequestResultDto.ObjectResultValue

Dim valueAsString As String = System.Text.Encoding.UTF8.GetString
(bytesFromFile)

Return valueAsString
 bytesFromFile = Convert.FromBase64String
(objRemoteRequestResultDto.ObjectResultValue)

'bytesFromFile = objRemoteRequestResultDto.ObjectResultValue

Dim valueAsString As String = System.Text.Encoding.UTF8.GetString
(bytesFromFile)

' Do something with the files here....
 BRApi.ErrorLog.LogMessage(si, "File Contents: " & Left
(valueAsString,10))

' We are saving the file into the OneStream Share here
' This is an option to allow other OneStream functions to process

the data
'Dim groupFolderPath As String =

FileShareFolderHelper.GetGroupsFolderForApp(si, True, AppServerConfig.GetSettings
(si).FileShareRootFolder, si.AppToken.AppName)

Dim groupFolderPath As String = BRAPi.Utilities.GetFileShareFolder
(si, FileShareFolderTypes.BatchHarvest, Nothing)

Using sw As StreamWriter = New StreamWriter(groupFolderPath &
"\outputfile.csv")
 sw.Write(valueAsString)
 sw.Close()

End Using

Smart Integration Connector Guide 93

Use Smart Integration Connector

Else
If (Not (objRemoteRequestResultDto.remoteException Is Nothing)) Then
Throw ErrorHandler.LogWrite(si, New XFException(si,

objRemoteRequestResultDto.remoteException))
End If

End If
End Sub

End Class
End Namespace

5. Test your Extender Business Rule via the Execute Extender button in the toolbar.

Step 3 - Automate from Data Management / Task
Scheduler

After the Extensibility Rule has been created and tested you can automate from a Data

Management Job and associate Task Schedule. See Task Scheduler for more information.

Obtain Data through a WebAPI
In this scenario, you have aWebAPI (IPaaS integration or another accessible REST API) to

obtain and pass back data to OneStream. You can use the following remote business rule in

Smart Integration Connector to invoke the API. If you have results that are in JSON format, you

can convert them to a data table and send them back to OneStream. If the data from the WebAPI

is in JSON, you can process the data in Smart Integrator Connector. Additionally, you can send

the raw data back as a string to a data management job for further testing.

Smart Integration Connector Guide 94

Use Smart Integration Connector

Task Scheduler.htm

Direct connections are preferred for this method and can be invoked using business rules within

OneStream similar to the SFTP example provided above.

See Multiple WebAPI Connections for best practices on scenarios with multiple WebAPIs.

NOTE: Data transferred over a Direct Connection to a WebAPI is transferred directly

over HTTP(S) and not converted to parquet format. OneStream does not control the

return format.

Host Headers

Host headers specify the domain name of the server that will receive the request. The Host

header is defined in the Business Rule and includes the domain name of the target server and

should match what the server expects in incoming requests (for example, api.example.com). See

Troubleshooting for additional information.

// The header must be set or some connections may be refused.
internalHttpClient.DefaultRequestHeaders.Host = "api.example.com";

Access a Single WebAPIs

To set up a single WebAPI connection:

Smart Integration Connector Guide 95

Use Smart Integration Connector

1. Set up a Direct Connection.

2. Export the Configuration and import to your Local Gateway Server. See the Setup and

Installation section for more information on this process.

3. Refresh your connections and verify this new connection is online.

IMPORTANT: Copy your Bound Port in OneStream. You will reference this

later in the extensibility rule.

Smart Integration Connector Guide 96

Use Smart Integration Connector

4. Create the Extensibility Rule below:

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Common;
using System.Globalization;
using System.IO;
using System.Linq;
using OneStream.Shared.Common;
using OneStream.Shared.Database;
using OneStream.Shared.Engine;
using OneStream.Shared.Wcf;
using System.Net;
using System.Net.Http;
using Newtonsoft.Json;
using System.Net.Http.Headers;

namespace OneStream.BusinessRule.Extender.SIC_WebAPI
{

public class MainClass
{

private static readonly HttpClient internalHttpClient = new HttpClient();

public object Main(SessionInfo si, BRGlobals globals, object api, ExtenderArgs
args)

{
try
{

 internalHttpClient.DefaultRequestHeaders.Accept.Clear();
 internalHttpClient.DefaultRequestHeaders.Accept.Add
(new MediaTypeWithQualityHeaderValue("application/json"));
 internalHttpClient.DefaultRequestHeaders.Accept.Add
(new MediaTypeWithQualityHeaderValue("application/x-www-form-urlencoded"));
 internalHttpClient.DefaultRequestHeaders.Accept.Add
(new MediaTypeWithQualityHeaderValue("application/octet-stream"));
 internalHttpClient.DefaultRequestHeaders.Accept.Add
(new MediaTypeWithQualityHeaderValue("text/plain"));
 internalHttpClient.DefaultRequestHeaders.Accept.Add
(new MediaTypeWithQualityHeaderValue("*/*"));

// The header must be set or some connections maybe refused.
 internalHttpClient.DefaultRequestHeaders.Host = "api.example.com";

// In this example, 20540 is the Bound Port in OneStream for the
Gateway being used.

var stringTask = internalHttpClient.GetStringAsync
("https://localhost:20540/v1/forecast?latitude=40.73&longitude=-
73.94&daily=temperature_2m_max,temperature_2m_min&temperature_
unit=fahrenheit&timezone=America%2FNew_York");

// Display the result in the exception dialog as an example.
throw new Exception(stringTask.Result);

 }
catch (Exception ex)

Smart Integration Connector Guide 97

Use Smart Integration Connector

{
throw ErrorHandler.LogWrite(si, new XFException(si, ex));

 }
 }
 }
}

5. Compile and test the business rule. If the extensibility ran successfully, you should see the

correct data that corresponds with the business rule in the Exception dialog box.

Access Multiple WebAPIs

If you are using more than oneWebAPI, the best practice is to perform this process using a single

connection and multiple remote Business Rules.

Use the following OneStream business rule to invoke the request.

Dim objRemoteRequestResultDto As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "RemoteWebAPISample", Nothing,
"testconnection",String.Empty) If (objRemoteRequestResultDto.RemoteResultStatus =
RemoteMessageResultType.Success) Dim xfDT = New XFDataTable
(si,objRemoteRequestResultDto.resultSet,Nothing,1000) End If

Use the following remote business rule to execute the request in C#.

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Common;
using System.Globalization;
using System.IO;
using System.Linq;
using System.Net;
using System.Net.Http;
using Newtonsoft.Json;
using System.Net.Http.Headers;
namespace OneStream.BusinessRule.SmartIntegrationFunction.RemoteWebAPISample
{
public class MainClass
{
private static readonly HttpClient internalHttpClient = new HttpClient();

Smart Integration Connector Guide 98

Use Smart Integration Connector

static MainClass()
{
 internalHttpClient.DefaultRequestHeaders.Accept.Clear();
 internalHttpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue
("application/json"));
 internalHttpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue
("application/x-www-form-urlencoded"));
 internalHttpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue
("application/octet-stream"));
 internalHttpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue
("text/plain"));
 internalHttpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue
("*/*"));
 }

public DataTable RunOperation()
{
var stringTask = internalHttpClient.GetStringAsync
(https://localhost:44388/WeatherForecast);
var msg = stringTask;
 DataTable dt = (DataTable)JsonConvert.DeserializeObject(stringTask.Result, (typeof
(DataTable)));
return dt;
 }
 }
}

Send Emails through Smart Integration
Direct Connections
Prior to using this business rule, you must have your email server configured. You must establish

a direct connection before sending email. See Single Web API Connection for more information

on setting up an initial direct connection. The following business rule can send email from an

Extender Business rule.

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Common;
using System.Globalization;
using System.IO;

Smart Integration Connector Guide 99

Use Smart Integration Connector

using System.Linq;
using Microsoft.CSharp;
using OneStream.Finance.Database;
using OneStream.Finance.Engine;
using OneStream.Shared.Common;
using OneStream.Shared.Database;
using OneStream.Shared.Engine;
using OneStream.Shared.Wcf;
using OneStream.Stage.Database;
using OneStream.Stage.Engine;
using System.Net.Mail;
using System.Net;
using System.Net.Security;
using System.Text.RegularExpressions;
using System.Security.Cryptography.X509Certificates;
namespace OneStream.BusinessRule.Extender.smtp_direct_test
{

public class MainClass
{

public SessionInfo SI;
private const string smtpHostName = "smtp.azurecomm.net"; // expected name to match

the cert.

public object Main(SessionInfo si, BRGlobals globals, object api, ExtenderArgs args)
{

var client = new SmtpClient();
var email = new MailMessage();

try
{

 SI = si;
// Add custom validation callback to look for expected cert (Host will be

localhost, which causes this to fail without a custom callback)
 ServicePointManager.ServerCertificateValidationCallback +=
ValidationCallback;

 client.UseDefaultCredentials = false;
 client.Port = 20542;
 client.Host = "localhost";
 client.EnableSsl = true;
 client.Credentials = new System.Net.NetworkCredential("<UserName>",
"<Password>");

 email.From = new MailAddress("DoNotReply@domain.com");
 email.To.Add("test@onestreamsoftware.com");
 email.Subject = "Test from SIC Gateway";
 email.IsBodyHtml = false;
 email.Body = "Forwarded test from SIC Gateway";

 client.Send(email);

return null;
 }

catch (Exception ex)
{

throw ErrorHandler.LogWrite(si, new XFException(si, ex));

Smart Integration Connector Guide 100

Use Smart Integration Connector

 }
finally
{

// Remove the custom ValidationCallback. It's recommended to remove this
before any other network calls.
 ServicePointManager.ServerCertificateValidationCallback -=
ValidationCallback;
 email.Dispose();
 client.Dispose();
 }
 }

public bool ValidationCallback(object sender, X509Certificate certificate, X509Chain
chain, SslPolicyErrors sslPolicyErrors)

{
var policyErrors = (sslPolicyErrors as SslPolicyErrors?) ??

SslPolicyErrors.None;
var certSubject = certificate?.Subject ?? string.Empty;
var certName = string.Empty;

// Extract the certName from the certSubject
string namePattern = @"CN=([^,]+)";
var match = Regex.Match(certSubject, namePattern);
if (match.Success)
{

 certName = match.Groups[1].Value;

 }
if (

(policyErrors == SslPolicyErrors.RemoteCertificateNameMismatch ||
policyErrors == SslPolicyErrors.None)
 && certName == smtpHostName)

{
// verify the certName matches the expected smtpHostName. No other

SslPolicyErrors should be present.
return true;

 }
else
{

return false;
 }
 }
 }
}

Smart Integration Connector Guide 101

Use Smart Integration Connector

Support for DLL Migration
For OneStream Platform version 8.0 and above, all customer-supplied DLLs will be referenced

through Smart Integration Connector. To use a DLL, copy the DLLs to the Referenced
Assemblies Folder in the Local Gateway Server Utility and reference this DLL within your Smart
Integration Function. See Referenced Assemblies Folder.

To verify the Referenced Assemblies Folder path:

1. Open theOneStream Local Gateway Configuration and Run as Administrator.

2. Navigate to and open Local Application Data Settings.

3. The file path under Referenced Assemblies Folder opens to the default location.

4. Click theOK button.

See the following SAP example for this process in use. See Smart Integration Additional Settings

for more information on these fields.

Smart Integration Connector Guide 102

Use Smart Integration Connector

SAP Connections

Establish a connection to an SAP environment using the OneStream SAP Connector. The best

practice is to use the SAP Connector when connecting to an SAP environment. If necessary, the

legacy connection method that uses the third-party ERPConnect DLL can be used.

Connect with the SAP Connector (Best Practice)

The SAP Connector is available from the OneStream Solution Exchange. To connect with the

SAP Connector, refer to the SAP Connector Guide.

Connect with the ERPConnect (SAP)

As an alternative to using the SAP Connector, you can connect to SAP using third-party DLLs,

such as ERPConnect##.dll. ERPConnect##.dll can be referenced using a Smart Integration

Connector Remote business rule. ERPConnectStandard20.dll is available through the download

DLL Packages from the Platform page of the Solution Exchange. ERPConnect requires additional

libraries to be obtained from SAP.

For additional information, see the Theobald Software ERPConnect Help Center .

To get started:

Smart Integration Connector Guide 103

Use Smart Integration Connector

https://solutionexchange.onestream.com/
../../../../../Content/SPC/Landing Page.htm
https://solutionexchange.onestream.com/dashboard/home/browse
https://helpcenter.theobald-software.com/erpconnect/documentation/introduction/

1. From the Platform page of the Solution Exchange, download the DLL Packages, which

contains the ERPConnectStandard20.dll file.

2. Extract the compressed zip file and then move the ERPConnectStandard20.dll to your

Referenced Assemblies Folder.

3. Install the required Visual C++ Redistributable latest supported downloads.

4. Login to your sap.com account and then download SAP NetWeaver RFC Library DLL

(sapnwrfc.dll) and associated icudt57.dll, icuin57.dll, icuuc57.dll files.

l Copy SAP NetWeaver RFC Library DLL (sapnwrfc.dll) to the Referenced Assemblies

folder.

l Copy icudt57.dll, icuin57.dll, and icuuc57.dll to C:\Windows\System32.

5. Modify your business rules to use the ERPConnectStandard20.dll.

6. Navigate to Application > Tools > Business Rules.

7. Expand the Smart Integration Function list.

8. Create a new Smart Integration Function or select an existing one.

9. Click the Properties tab.

Smart Integration Connector Guide 104

Use Smart Integration Connector

https://solutionexchange.onestream.com/dashboard/home/browse
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170#latest-microsoft-visual-c-redistributable-version

10. Enter ERPConnectStandard20.dll in the Referenced Assemblies field. The Smart
Integration Connector Gateway server will attempt to locate this DLL in the previously

defined folder: Referenced BusinessRule AssemblyFolder.

Smart Integration Connector Guide 105

Use Smart Integration Connector

11. Add Imports for ERPConnect and ERPConnect.Utils.

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Common;
using System.Globalization;
using System.IO;
using System.Linq;
using ERPConnect;
using ERPConnect.Utils;
namespace OneStream.BusinessRule.SmartIntegrationFunction.ERP_Connect_Test
{
public class MainClass
{
public const string UserName = "";
public const string Password = "";
public const string Host = "";
public DataTable RunOperation()
{

using (R3Connection con = new R3Connection())
{

 con.UserName = UserName;
 con.Password = Password;
 con.Language = "EN";
 con.Client = "800";
 con.Host = Host;
 con.SystemNumber = 00;
 con.Protocol = ClientProtocol.NWRFC; // Optional: If the NW RFC libraries are used.
 con.UsesLoadBalancing = false;
 con.Open();
 ReadTable table = new ReadTable(con);
 table.AddField("MATNR");
 table.AddField("MAKTX");
 table.WhereClause = "SPRAS = 'EN' AND MATNR LIKE '%23'";
 table.TableName = "MAKT";
 table.RowCount = 10;
 table.Run();
return table.Result;

}
}

}
}

12. Verify you can compile the function on your Gateway.

You are now ready to add your custom code.

Smart Integration Connector Guide 106

Use Smart Integration Connector

Business Rules
The Smart Integration Connector Capabilities introduce additional business rule APIs (BR APIs)

to allow for execution and management of remote business rules inside the context of the Smart

Integration Connector gateway. These rules are transported using https to the Smart Integration

Connector local gateway, compiled locally, executed, and the results returned to the caller for

further processing. They provide a mechanism for complex drill backs, data processing scenarios

or to invoke remote webAPIs hosted in your network.

NOTE: Gateways must have a local data source defined to invoke remote business
rules.

There are two ways business rules can be used with the Smart Integration Connector Gateway:

l OneStream BRAPIs interact with a specific local gateway and run on OneStream

application servers.

l Business rules that reference DLLs that are only accessible by the Local Gateway Server.

These BRs are compiled and executed on the local gateway (Remote Business Rules

when creating them in the Windows Desktop Client).

In these scenarios, the local gateway must have the allowRemoteCodeExec setting configured to

True to enable remote execution.

The BR APIs are outlined below:

IsRemoteDtoSuccessful

ExecRemoteGatewayRequest

Smart Integration Connector Guide 107

Business Rules

ExecRemoteGatewayCachedBusinessRule

ExecRemoteGatewayJob

ExecRemoteGatewayBusinessRule

GetRemoteDataSourceConnection

GetRemoteGatewayJobStatus

GetSmartIntegrationConfigValue

GetGatewayConnectionInfo

Check OneStream Version

BRApi.Utilities.IsGatewayOnline(gwName)

Business Rules Compatibility

IsRemoteDtoSuccessful
Use the IsRemoteDtoSuccessful method to integrate debugging into business rules. It validates a

successful request is received prior to further processing.

IsRemoteDtoSuccessful method:

BRApi.Utilities.IsRemoteDtoSuccessful(SessionInfo, RemoteRequestResultDto)

Smart Integration Connector Guide 108

Business Rules

Parameters:

l si: SessionInfo object used to create connection objects

l RemoteRequestResultDto - Result of execution including the status and any exceptions

which may have occurred on the remote endpoint

l Return: RemoteRequestResultDto - Returns True or False.

 public class MainClass
{
 public object Main(SessionInfo si, BRGlobals globals, object api, ExtenderArgs args)
{

 var GatewayName = "apgate"; // Name of the Gateway
 var RemoteMethodName = "RunOperation"; // Name of the method inside the SIC Function that
will be called.
 //DataTable non null dto and remote exception
 //resultdtovaluetype is not null and there are remote exception
 RemoteRequestResultDto objRemoteRequestResultDto0 =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "TestReturnNonNullRemoteEx", null,
GatewayName, RemoteMethodName);
 try

{
 bool ret = false;
 ret = BRApi.Utilities.IsRemoteDtoSuccessful(si,objRemoteRequestResultDto0);
 }
 catch (Exception ex)

{
 BRApi.ErrorLog.LogMessage(si, "ResultDto execption: "
+ ex.InnerException.Message.ToString());
 }
 //DataTable
 //Failed - resultdtovaluetype is null and no remote exceptions
 RemoteRequestResultDto objRemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "TestReturnDataTable", new object[]
{true}, GatewayName, RemoteMethodName);
 BRApi.ErrorLog.LogMessage(si,"IsRemoteDtoSuccess.DataTable False = " +
BRApi.Utilities.IsRemoteDtoSuccessful(si,objRemoteRequestResultDto).ToString());
 //Success - resultdtovaluetype is not null and no remote exceptions
 RemoteRequestResultDto objRemoteRequestResultDtoA =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "TestReturnDataTable", new object[]
{false}, GatewayName, RemoteMethodName);
 BRApi.ErrorLog.LogMessage(si,"IsRemoteDtoSuccess.DataTable True = " +
BRApi.Utilities.IsRemoteDtoSuccessful(si,objRemoteRequestResultDtoA).ToString());
 //DataSet
 //Failed - resultdtovaluetype is null and no remote exceptions
 RemoteRequestResultDto objRemoteRequestResultDto1 =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "TestReturnDataset", new object[] {true},
GatewayName, RemoteMethodName);
 BRApi.ErrorLog.LogMessage(si,"IsRemoteDtoSuccess.Dataset False = " +
BRApi.Utilities.IsRemoteDtoSuccessful(si,objRemoteRequestResultDto1).ToString());
 //Success - resultdtovaluetype is not null and no remote exceptions
 RemoteRequestResultDto objRemoteRequestResultDto1A =

Smart Integration Connector Guide 109

Business Rules

BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "TestReturnDataset", new object[] {false},
GatewayName, RemoteMethodName);
 BRApi.ErrorLog.LogMessage(si,"IsRemoteDtoSuccess.Dataset True = " +
BRApi.Utilities.IsRemoteDtoSuccessful(si,objRemoteRequestResultDto1A).ToString());
 //Value
 //Failed - resultdtovaluetype is null and no remote exceptions
 RemoteRequestResultDto objRemoteRequestResultDto2 =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "TestReturnValue", new object[] {true},
GatewayName, RemoteMethodName);
 BRApi.ErrorLog.LogMessage(si,"IsRemoteDtoSuccess.ObjectValue False = " +
BRApi.Utilities.IsRemoteDtoSuccessful(si,objRemoteRequestResultDto2).ToString());
 //Success - resultdtovaluetype is not null and no remote exceptions
 RemoteRequestResultDto objRemoteRequestResultDto2A =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "TestReturnValue", new object[] {false},
GatewayName, RemoteMethodName);
 BRApi.ErrorLog.LogMessage(si,"IsRemoteDtoSuccess.ObjectValue True = " +
BRApi.Utilities.IsRemoteDtoSuccessful(si,objRemoteRequestResultDto2A).ToString());
 //Exception
 //Failed - resultdtovaluetype is null and there are remote exceptions
 try

{
 RemoteRequestResultDto objRemoteRequestResultDto3 =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "TestReturnException", null, GatewayName,
RemoteMethodName);
 BRApi.Utilities.IsRemoteDtoSuccessful(si,objRemoteRequestResultDto3);
 }
 catch (Exception ex)

{
 BRApi.ErrorLog.LogMessage(si, ex.InnerException.Message.ToString());
 }
 return null;
 }
 }

ExecRemoteGatewayRequest
Initiates a request to a local gateway as specified in the remote request object. This request is

dispatched to the Smart Integration Connector local gateway connection data source with the

specified command remote invoked.

Smart Integration Connector Guide 110

Business Rules

NOTE: This method is used for request and response type interactions to a remote
endpoint that runs for three or less minutes. The default execution timeout is 90 seconds

and can be overridden by setting the CommandTimeout property on the

RemoteRequestDTO instance provided.

Parameter details:

l RemoteRequestDTO: Remote request object populated with the remote command and

endpoint

l Returns: RemoteRequestResultDto - Result of execution including the status and any

exceptions which may have occurred on the remote endpoint

Following is an example connector business rule that would run on the OneStream application

server sending a remote request and block of code to a Local Gateway Connection:

// ExecRemoteGatewayRequest for arbitrary code execution returning a DataTable
string GatewayName = "";
RemoteRequestResultDto objxfRemoteRequestResultDto;
RemoteCodeRequestDto objxfRemoteRequest = new RemoteCodeRequestDto();
// Indication the desire is to run a remote block of code
objxfRemoteRequest.ConnectionType = RemoteCommandType.RemoteCodeExec;
// Name of the remote host to pass to
objxfRemoteRequest.GatewayHostForRequest = GatewayName;
var strCode = "using System;...."; // Valid block of C# or VB.NET code
objxfRemoteRequest.LanguageType = RemoteCodeLanguageType.CSHARP;
objxfRemoteRequest.RemoteCodeBlock = strCode;
objxfRemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayRequest(objxfRemoteRequest);
var xfDT = new XFDataTable(si, objxfRemoteRequestResultDto.ResultSet, null, 1000);

Here is the example in VB:

' ExecRemoteGatewayRequest for arbitrary code execution returning a DataTable
Dim GatewayName As String = ""
Dim objxfRemoteRequestResultDto As RemoteRequestResultDto
Dim objxfRemoteRequest As New RemoteCodeRequestDto
' Indication the desire is to run a remote block of code
objxfRemoteRequest.connectionType = RemoteCommandType.RemoteCodeExec
' Name of the remote host to pass to
objxfRemoteRequest.gatewayHostforRequest = GatewayName
Dim strCode As String = "using System;...." ' Valid block of C# or VB.NET code

Smart Integration Connector Guide 111

Business Rules

objxfRemoteRequest.LanguageType = RemoteCodeLanguageType.CSHARP
objxfRemoteRequest.remoteCodeBlock = strCode
objxfRemoteRequestResultDto=BRApi.Utilities.ExecRemoteGatewayRequest(objxfRemoteRequest)
Dim xfDT = New XFDataTable(si, objxfRemoteRequestResultDto.ResultSet, Nothing, 1000)

This BR API can also be used to invoke arbitrary SQL commands against a Smart Integration

Connector local gateway connection data source at your site:

/ ExecRemoteGatewayRequest for arbitrary SQL returning a DataTable
string SQL = ""; // SQL SELECT statement goes here
RemoteRequestResultDto objxfRemoteRequestResultDto;
RemoteRequestDto objxfRemoteRequest = new RemoteRequestDto();
// Indicate this is a remote SQL command request
objxfRemoteRequest.ConnectionType = RemoteCommandType.SQLCommand;
objxfRemoteRequest.RelayRemoteDBConnection = ""; // Name of the connection defined in the
remote endpoint
objxfRemoteRequest.GatewayHostForRequest = ""; // Name of the remote host to pass to
objxfRemoteRequest.RemoteCommand = SQL;
objxfRemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayRequest(objxfRemoteRequest);
// Evaulate the results to determine if it was successful
if (objxfRemoteRequestResultDto.RemoteResultStatus == RemoteMessageResultType.Success)
{
// Logic to use results in `objxfRemoteRequestResultDto.ResultSet`
}
else
{
// Query failed. Add additional logic here to handle this case.
}

Here is the example in VB:

' ExecRemoteGatewayRequest for arbitrary SQL returning a DataTable
Dim SQL As String = "" ' SQL SELECT statement goes here
Dim objxfRemoteRequestResultDto As RemoteRequestResultDto
Dim objxfRemoteRequest As New RemoteRequestDto
' Indicate this is a remote SQL command request
objxfRemoteRequest.connectionType = RemoteCommandType.SQLCommand
objxfRemoteRequest.RelayRemoteDBConnection = "" ' Name of the connection defined in the
remote endpoint
objxfRemoteRequest.GatewayHostforRequest = "" ' Name of the remote host to pass to
objxfRemoteRequest.RemoteCommand = SQL
objxfRemoteRequestResultDto=BRApi.Utilities.ExecRemoteGatewayRequest(objxfRemoteRequest)
' Evaulate the results to determine if it was successful
If (objxfRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.Success) Then
' Logic to use results in `objxfRemoteRequestResultDto.ResultSet`
Else
' Query failed. Add additional logic here to handle this case.

Smart Integration Connector Guide 112

Business Rules

End If

Remote function returning a datatable (C#) without parameters:

// ExecRemoteGatewayBusinessRule
var GatewayName = ""; // Name of the Gateway
var SICFunctionName = ""; // Name of the SIC Function to run
var RemoteMethodName = ""; // Name of the method inside the SIC Function that will be called
var objRemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayBusinessRule(si,
GatewayName, null, SICFunctionName, RemoteMethodName);
if (BRApi.Utilities.IsRemoteDtoSuccessful(si, objRemoteRequestResultDto))
{

if (objRemoteRequestResultDto.ResultType == RemoteResultType.DataTable)
{

 BRApi.ErrorLog.LogMessage(si, "Data Returned: " +
objRemoteRequestResultDto.ResultSet.Rows.Count);
 }
}
else
{

if (!(objRemoteRequestResultDto.RemoteException is null))
{

throw ErrorHandler.LogWrite(si, new XFException(si,
objRemoteRequestResultDto.RemoteException));
 }
}

Here is the example in VB:

' ExecRemoteGatewayBusinessRule

' Call a remote Smart Integration Function
Dim GatewayName As String = "" ' Name of the Gateway
Dim SICFunctionName As String = "" ' Name of the SIC Function to run
Dim RemoteMethodName As String = "" ' Name of the method inside the SIC Function that will
be called
Dim objRemoteRequestResultDto As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, GatewayName, Nothing, SICFunctionName,
RemoteMethodName)
If (BRApi.Utilities.IsRemoteDtoSuccessful(si, objRemoteRequestResultDto)) Then
If (objRemoteRequestResultDto.ResultType = RemoteResultType.DataTable) Then
 BRApi.ErrorLog.LogMessage(si, "Data Returned: " &
objRemoteRequestResultDto.ResultSet.Rows.Count)
End If
Else
If (Not (objRemoteRequestResultDto.RemoteException Is Nothing)) Then
Throw ErrorHandler.LogWrite(si, New XFException(si,
objRemoteRequestResultDto.RemoteException))
End If

Smart Integration Connector Guide 113

Business Rules

End If

ExecRemoteGatewayCachedBusinessRule
When a cache flag and key is provided to the ExecRemoteGatewayBusinessRule BR API, this

method is used to invoke a previously cached method. This is intended to be used for high-

frequency remote business rules to avoid the performance impact of recompiling a remote

method on each invocation.

NOTE: Requires allowRemoteCodeExec = True on Smart Integration Connector local
gateway. If the previously cached method is not invoked after 60 minutes, the remote

cached method is purged.

Parameter details:

l si: SessionInfo object used to create connection objects

l cachedFunctionKey: Key of previously cached remote function to invoke

l functionArguments: Array of objects aligning to function / method parameters. Null /

Nothing if there are none required

l remoteHost: Name of remote host to invoke operation. (Smart Integration Connector Local

Gateway Name)

l executionTimeOut: Timeout (in seconds) on the remote job

l Returns: RemoteRequestResultDto - Result of execution including the status and any

exceptions which may have occurred on the remote endpoint

Smart Integration Connector Guide 114

Business Rules

Here is the rule in C#:

// ExecRemoteGatewayCachedBusinessRule

// Execute and cache a remote SIC Function for later use
var GatewayName = ""; // Name of the Gateway
var SICFunctionName = ""; // Name of the SIC Function to run
var RemoteMethodName = ""; // Name of the method inside the SIC Function that will be called
var SICCachedFunctionName = ""; // Name of the cache key for this SIC Function, which can be
called on subsequent requests
RemoteRequestResultDto objRemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, SICFunctionName, null, GatewayName,
RemoteMethodName, SICCachedFunctionName, false, 90);

if (BRApi.Utilities.IsRemoteDtoSuccessful(si, objRemoteRequestResultDto)
 && objRemoteRequestResultDto.ResultType == RemoteResultType.DataTable)
{
 BRApi.ErrorLog.LogMessage(si, "Data Returned - Rows:" +
objRemoteRequestResultDto.ResultSet.Rows.Count);
}
else
{
if (objRemoteRequestResultDto.RemoteException != null)
{
throw ErrorHandler.LogWrite(si, new XFException(si,
objRemoteRequestResultDto.RemoteException));
 }
else
{
 BRApi.ErrorLog.LogMessage(si, "Remote Smart Integration Function Succeeded - no
data/datatable returned");
 }
}

// Subsequent invocations of the remote BR can be run by specifying the endpoint and the
cached key name
RemoteRequestResultDto objRemoteRequestResultDtoCached =
BRApi.Utilities.ExecRemoteGatewayCachedBusinessRule(si, SICCachedFunctionName , null,
GatewayName, 90);

Here is the rule in VB.NET:

' ExecRemoteGatewayCachedBusinessRule

' Execute and cache a remote SIC Function for later use
Dim GatewayName As String = "" ' Name of the Gateway
Dim SICFunctionName As String = "" ' Name of the SIC Function to run
Dim RemoteMethodName As String = "" ' Name of the method inside the SIC Function that will
be called
Dim SICCachedFunctionName As String = "" ' Name of the cache key for this SIC Function,
which can be called on subsequent requests
Dim objRemoteRequestResultDto As RemoteRequestResultDto =

Smart Integration Connector Guide 115

Business Rules

BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, SICFunctionName, Nothing, GatewayName,
RemoteMethodName, SICCachedFunctionName, False, 90)

If (BRApi.Utilities.IsRemoteDtoSuccessful(si, objRemoteRequestResultDto) AndAlso
objRemoteRequestResultDto.ResultType = RemoteResultType.DataTable) Then
 BRApi.ErrorLog.LogMessage(si, "Data Returned - Rows:" +
objRemoteRequestResultDto.ResultSet.Rows.Count)
Else
If (objRemoteRequestResultDto.RemoteException IsNot Nothing) Then
Throw ErrorHandler.LogWrite(si, New XFException(si,
objRemoteRequestResultDto.RemoteException))
Else
 BRApi.ErrorLog.LogMessage(si, "Remote Smart Integration Function Succeeded - no
data/datatable returned")
End If
End If

' Subsequent invocations of the remote BR can be run by specifying the endpoint and the
cached key name
Dim objRemoteRequestResultDtoCached As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayCachedBusinessRule(si, SICCachedFunctionName, Nothing,
GatewayName, 90)

ExecRemoteGatewayJob
There may be instances where a remote operation on the Smart Integration Connector Local

Gateway host would need to process and assemble data that may take several minutes to run. In

this situation, you could use this BR API to queue and run a remote business rule in an

asynchronous manner where the remote Smart Integration Connector Local Gateway host

returns a Job ID (GUID) that can later be used to obtain the job’s status or the results if the job is

complete. When invoking this method, if the RemoteMessageResultStatus is returned as

JobRunning (as shown in the example below), the RequestJobID is populated with the ID of the

queued job that can later be used to obtain status.

Smart Integration Connector Guide 116

Business Rules

NOTE: Requires allowRemoteCodeExec = True on Smart Integration Connector Local
Gateway. There is a defined default limit of 30 minutes for remote jobs to execute before

the job is cancelled, and an overloaded version of ExecremoteGatewayJob exists

allowing the timeout to be provided, but can never exceed 4 hours. This is not

configurable and if this timeout is reached, the status returned shows the timeout. If the

result is not obtained within five minutes after the job completes (using the

GetRemoteGatewayJobStatus BR API), the remote results are purged to ensure that

result objects reclaim server memory on the Smart Integration Service host.

NOTE: This is required to call back into GetRemoteJobStatus with the returned ID to

obtain the result:

Here is a basic overview of invoking a remote job and displaying the returned remote Job ID in C#.

// ExecRemoteGatewayJob basic example

var GatewayName = ""; // Name of the Gateway
var SICFunctionName = ""; // Name of the SIC Function to run
var argTest = new object[2];
argTest[0] = 100; // Example first argument to SIC Function
argTest[1] = "test"; // Example second argument to SIC Function

// Invoking a OneStream SIC Function Business Rule as a remote job
var objRemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayJob(si, SICFunctionName,
argTest, GatewayName, String.Empty);
if (objRemoteRequestResultDto.RemoteResultStatus == RemoteMessageResultType.JobRunning)
{
// Logic to wait for job to complete
}

Here is the basic example in VB:

' ExecRemoteGatewayJob basic example

Dim GatewayName As String = "" ' Name of the Gateway
Dim SICFunctionName As String = "" ' Name of the SIC Function to run
Dim argTest(1) As Object
argTest(0) = 100 ' Example first argument to SIC Function
argTest(1) = "test" ' Example second argument to SIC Function

Smart Integration Connector Guide 117

Business Rules

' Invoking a OneStream SIC Function Business Rule as a remote job
Dim objRemoteRequestResultDto As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayJob(si, SICFunctionName, argTest, GatewayName,
String.Empty)
If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.JobRunning) Then
' Logic to wait for job to complete
End If

Here is the rule in C# to invoke a job, obtain the job ID, and 'poll' until completion:

// ExecRemoteGatewayJob with polling

var jobID = new Guid();
var GatewayName = ""; // Name of the Gateway
var SICFunctionName = ""; // Name of the SIC Function to run

// Invoke a long-running Job with a Smart Integration Function
var objRemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayJob(si, GatewayName, null,
SICFunctionName, String.Empty);

// If Successful, the status is retuned indicating the job is running with the job ID. Use
this ID to interrogate if the job is compleed.
if (objRemoteRequestResultDto.RemoteResultStatus == RemoteMessageResultType.JobRunning)
{
 jobID = objRemoteRequestResultDto.RequestJobID;
 BRApi.ErrorLog.LogMessage(si, "Remote Job Queued and Running - JobID: " + jobID.ToString
());
// Example waiting 20 seconds for job to complete
for (var loopControl = 0; loopControl < 10; loopControl++)
{
 System.Threading.Thread.Sleep(2000);
var objJobStatus = BRApi.Utilities.GetRemoteGatewayJobStatus(si, jobID, GatewayName);

if (objJobStatus.RemoteJobState == RemoteJobState.Running)
{
 BRApi.ErrorLog.LogMessage(si, "Remote Job Still running - JobID: " + jobID.ToString());
 }
else if (objJobStatus.RemoteJobState == RemoteJobState.Completed)
{
// Checking the return type from the remote job
if (!(objJobStatus.RemoteJobResult.ResultSet is null))
{
var xfDT = new XFDataTable(si, objJobStatus.RemoteJobResult.ResultSet, null, 1000);
 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Datatable Returned - JobID: " +
jobID.ToString());
return null;
 }
else if (!(objJobStatus.RemoteJobResult.ResultDataSet is null))
{
var xfDT = new XFDataTable(si, objJobStatus.RemoteJobResult.ResultDataSet.Tables[0], null,
1000);
 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Dataset Returned - JobID: " +
jobID.ToString());

Smart Integration Connector Guide 118

Business Rules

return null;
 }
else if (!(objJobStatus.RemoteJobResult.ResultDataCompressed is null))
{
 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Object Returned - JobID: " +
jobID.ToString());
var value = CompressionHelper.InflateJsonObject<String>(si,
objJobStatus.RemoteJobResult.ResultDataCompressed);
 BRApi.ErrorLog.LogMessage(si, value);
return null;
 }
 }
else if (objJobStatus.RemoteJobState == RemoteJobState.JobNotFound)
{
 BRApi.ErrorLog.LogMessage(si, "Remote Job Not Found - JobID: " + jobID.ToString());
return null;
 }
else if (objJobStatus.RemoteJobState == RemoteJobState.RequestTimeOut)
{
 BRApi.ErrorLog.LogMessage(si, "Remote Job Timed Out - JobID: " + jobID.ToString());
return null;
 }
else if (objRemoteRequestResultDto.RemoteResultStatus == RemoteMessageResultType.Exception)
{
 BRApi.ErrorLog.LogMessage(si, "Exception During Execution of Job: " +
objRemoteRequestResultDto.RemoteException.ToString());
 }
 }
}
else
{
// Exception occurred immediately during compile/initial run
if (objRemoteRequestResultDto.RemoteResultStatus == RemoteMessageResultType.Exception)
{
 BRApi.ErrorLog.LogMessage(si, "Exception Executing Job: " +
objRemoteRequestResultDto.RemoteException.ToString());
 }
else
{
 BRApi.ErrorLog.LogMessage(si, "General Job Execution Error - State: " +
objRemoteRequestResultDto.RemoteResultStatus.ToString());
 }
}

return null;

Here is the rule in VB.NET to invoke a job, obtain the job ID, and 'poll' until completion:

' ExecRemoteGatewayJob with polling

Dim jobID As Guid
Dim GatewayName As String = "" ' Name of the Gateway

Smart Integration Connector Guide 119

Business Rules

Dim SICFunctionName As String = "" ' Name of the SIC Function to run

' Invoke a long-running Job with a Smart Integration Function
Dim objRemoteRequestResultDto As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayJob(si, GatewayName, Nothing, SICFunctionName,
String.Empty)

' If Successful, the status is retuned indicating the job is running with the job ID. Use
this ID to interrogate if the job is compleed.
If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.JobRunning) Then
 jobID = objRemoteRequestResultDto.RequestJobID
 BRApi.ErrorLog.LogMessage(si, "Remote Job Queued and Running - JobID: " & jobID.ToString())
' Example waiting 20 seconds for job to complete
For loopControl = 0 To 10
 System.Threading.Thread.Sleep(2000)
Dim objJobStatus As RemoteJobStatusResultDto = BRApi.Utilities.GetRemoteGatewayJobStatus
(si, JobID, GatewayName)

If (objJobStatus.RemoteJobState = RemoteJobState.Running) Then
 BRApi.ErrorLog.LogMessage(si, "Remote Job Still running - JobID: " & jobID.ToString())
Else If (objJobStatus.RemoteJobState = RemoteJobState.Completed)
' Checking the return type from the remote job
If (objJobStatus.RemoteJobResult.ResultSet IsNot Nothing) Then
Dim xfDT As XFDataTable = New XFDataTable(si, objJobStatus.RemoteJobResult.ResultSet,
Nothing, 1000)
 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Datatable Returned - JobID: " &
jobID.ToString())
Return Nothing
Else If (Not objJobStatus.RemoteJobResult.ResultDataSet Is Nothing) Then
Dim xfDT As XFDataTable = New XFDataTable
(si,objJobStatus.RemoteJobResult.ResultDataSet.Tables(0), Nothing, 1000)
 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Dataset Returned - JobID: " &
jobID.ToString())
Return Nothing
Else If objJobStatus.RemoteJobResult.ResultDataCompressed IsNot Nothing Then
 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Object Returned - JobID: " &
jobID.ToString())
Dim value As String = CompressionHelper.InflateJsonObject(Of String)(si,
objJobStatus.RemoteJobResult.ResultDataCompressed)
 Brapi.ErrorLog.LogMessage(si, value)
Return Nothing
End If
Else If (objJobStatus.RemoteJobState = RemoteJobState.JobNotFound) Then
 BRApi.ErrorLog.LogMessage(si, "Remote Job Not Found - JobID: " & jobID.ToString())
Return Nothing
Else If (objJobStatus.RemoteJobState = RemoteJobState.RequestTimeOut) Then
 BRApi.ErrorLog.LogMessage(si, "Remote Job Timed Out - JobID: " & jobID.ToString())
Return Nothing
Else If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.Exception)
Then
 BRApi.ErrorLog.LogMessage(si, "Exception During Exeuction of Job: " &
objRemoteRequestResultDto.RemoteException.ToString())
End If
Next
Else
' Exception occurred immediately during compile/initial run
If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.Exception) Then

Smart Integration Connector Guide 120

Business Rules

 BRApi.ErrorLog.LogMessage(si, "Exception Executing Job: " &
objRemoteRequestResultDto.RemoteException.ToString())
Else
 BRApi.ErrorLog.LogMessage(si, "General Job Execution Error - State: " &
objRemoteRequestResultDto.RemoteResultStatus.ToString())
End If
End If

Return Nothing

ExecRemoteGatewayBusinessRule
This is a core BR API that can be used to remotely invoke Smart Integration functions on a

specified remote Smart Integration Connector Local Gateway host. The Smart Integration

Connector Local Gateway must have allowRemoteCodeExec set to True for this BR API to invoke

an operation successfully, otherwise the Smart Integration Connector Local Gateway host returns

a result indicating that remote code execution is disabled.

This method takes a previously authored Smart Integration function, written in VB.NET or C#, in

the OneStream application and passes it to the remote host for execution. With this BR API, it is

expected that remote calls should take no more than 2-3 minutes to return a result to the caller as

this BR API will block until a result is returned. If longer running or sync operations are needed,

consider using the execRemoteGatewayJob BR API.

NOTE: Requires allowRemoteCodeExec = True on Smart Integration Service

Parameter details:

l si: SessionInfo object used to create connection objects

l brName: Name of the locally defined (within the OneStream Application scope) Smart

Integration function

Smart Integration Connector Guide 121

Business Rules

l functionArguments: Array of objects aligning to function / method parameters. Null /

Nothing if there are none required.

l remoteHost: Name of remote host to invoke operation. (Smart Integration Connector name)

l functionName: Name of the function in the Smart Integration function to invoke. If null or

empty, a function/method with the name RunOperation is expected to exist within the

authored code.

l (Optional) cachedFunctionKey: Name used to cache the remote function to avoid

recompiling the function on a subsequent call. This is optional and if missing or null the

function will not be cached.

l (Optional) forceCacheUpdate: Option indicating if a previously cached function should be

replaced with this version. When true, and an existing function is found with a name

specified in the cachedFunctionKey parameter, the BR is recompiled and recached. This is

useful for situations where a remote function is cached and a change was made.

l executionTimeOut: Timeout (in seconds) on the remote job (In 7.4, this is now an optional

parameter and defaults to 90 seconds if the parameter is missing.)

Here is a C# drill-back example:

// ExecRemoteGatewayBusinessRule displaying results in drillback
var GatewayName = ""; // Name of the Gateway
var SICFunctionName = ""; // Name of the SIC Function to run
DrillBackResultInfo drillBackInfo = new DrillBackResultInfo();
DataTable dtf = BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, SICFunctionName, null,
GatewayName, string.Empty).ResultSet;
var xfDT = new XFDataTable(si, dtf, null, 1000);
drillBackInfo.DataTable = xfDT;
drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.DataGrid;
return drillBackInfo;

Here is a VB example:

' ExecRemoteGatewayBusinessRule displaying results in drillback
Dim GatewayName As String = "" ' Name of the Gateway

Smart Integration Connector Guide 122

Business Rules

Dim SICFunctionName As String = "" ' Name of the SIC Function to run
Dim drillBackInfo As DrillBackResultInfo = new DrillBackResultInfo()
Dim dtf As DataTable = BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, SICFunctionName,
Nothing, GatewayName, String.Empty).ResultSet
Dim xfDT As XFDataTable = new XFDataTable(si, dtf, Nothing, 1000)
drillBackInfo.DataTable = xfDT
drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.DataGrid
Return drillBackInfo

Here is a C# drill-back example that invokes a remote business rule accepting 2 parameters:

// ExecRemoteGatewayBusinessRule Drillback example
var GatewayName = ""; // Name of the Gateway
var SICFunctionName = ""; // Name of the SIC Function to run
var RemoteMethodName = ""; // Name of the method inside the SIC Function that will be
called.
var drillBackInfo = new DrillBackResultInfo();
object[] argTest = new object[2]; // Creating an object array to package the method
parameters
argTest[0] = 12; // First parameter is an integer
argTest[1] = "test"; // Second parameter is a string

// Remote Smart Integration Function Signature: ' Public Shared Function RunOperation2
(testval As Integer, teststr As String) As ArrayList
// Invoking method RunOperation2 on endpoint testConnection passing in user defined
parameters as an array

var objRemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayBusinessRule(si,
SICFunctionName, argTest, GatewayName, RemoteMethodName);

if (objRemoteRequestResultDto.RemoteResultStatus ==
RemoteMessageResultType.RunOperationReturnObject)
{
var returnVal = objRemoteRequestResultDto.ObjectResultValue as ArrayList;
// Simple demonstration without error checking to look at the first element of the
arraylist
 drillBackInfo.TextMessage = "Completed! " + returnVal[0].ToString();
 drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.TextMessage;
return drillBackInfo;
}
else if (objRemoteRequestResultDto.RemoteResultStatus == RemoteMessageResultType.Success)
{
// Demonstrating a 'pattern' whereby the caller can verify what the type is that's returned
and handle properly.
var xfDT = new XFDataTable(si, objRemoteRequestResultDto.ResultSet, null, 1000);
 drillBackInfo.DataTable = xfDT;
 drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.DataGrid;
return drillBackInfo;
}
else if (!(objRemoteRequestResultDto.RemoteException is null))
{
throw ErrorHandler.LogWrite(si, new XFException(si,
objRemoteRequestResultDto.RemoteException));

Smart Integration Connector Guide 123

Business Rules

}

Here is a VB.NET drill-back example that invokes a remote business rule accepting 2 parameters:

' ExecRemoteGatewayBusinessRule Drillback example
Dim GatewayName As String = "" ' Name of the Gateway
Dim SICFunctionName As String = "" ' Name of the SIC Function to run
Dim RemoteMethodName As String = "" ' Name of the method inside the SIC Function that will
be called.
Dim drillBackInfo As New DrillBackResultInfo
Dim argTest(1) As Object ' Creating an object array to package the method parameters
argTest(0) = 12 ' First parameter is an integer
argTest(1) = "test" ' Second parameter is a string

' Remote Smart Integration Function Signature: ' Public Shared Function RunOperation2
(testval As Integer, teststr As String) As ArrayList

' Invoking method RunOperation2 on endpoint testConnection passing in user defined
parameters as an array

Dim objRemoteRequestResultDto As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, SICFunctionName, argTest, GatewayName,
RemoteMethodName)

If (objRemoteRequestResultDto.RemoteResultStatus =
RemoteMessageResultType.RunOperationReturnObject) Then
Dim returnVal As ArrayList = objRemoteRequestResultDto.ObjectResultValue
'Simple demonstration without error checking to look at the first element of the arraylist
 drillBackInfo.TextMessage = "Completed! " & returnVal(0).ToString()
 drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.TextMessage
Return drillBackInfo
Else If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.Success)
' Demonstrating a 'pattern' whereby the caller can verify what the type is that's returned
and handle properly.
Dim xfDT = New XFDataTable(si, objRemoteRequestResultDto.ResultSet, Nothing, 1000)
 drillBackInfo.DataTable = xfDT
 drillBackInfo.DisplayType = ConnectorDrillBackDisplayTypes.DataGrid
Return drillBackInfo
Else If (Not (objRemoteRequestResultDto.remoteException Is Nothing))
Throw ErrorHandler.LogWrite(si, New XFException(si,
objRemoteRequestResultDto.RemoteException))
End If

Below is a TestFileRead Remote Business Rule function in C# Referenced by Examples Below.

Here it is in C#:

using System;

Smart Integration Connector Guide 124

Business Rules

using System.Collections.Generic;
using System.Data;
using System.Data.Common;
using System.Globalization;
using System.IO;
using System.Linq;

namespace OneStream.BusinessRule.SmartIntegrationFunction.TestFileRead
{
public class MainClass
{
public byte[] RunOperation(string year)
{
string fname = @"c:\temp\hw_" + year + ".csv";
byte[] buffer = System.IO.File.ReadAllBytes(fname);
return buffer;
 }

public byte[] GetOtherFileData(string year)
{
string fname = @"c:\temp\zw_" + year + ".csv";
byte[] buffer = System.IO.File.ReadAllBytes(fname);
return buffer;
 }

public bool DeleteOldFileData(string year)
{
string fname = @"c:\temp\zw_" + year + ".csv";
try
{
 System.IO.File.Delete(fname);
return true;
 }
catch (IOException ex)
{
return false;
 }
 }
 }
}

Here it is in VB:

Imports System
Imports System.Collections.Generic
Imports System.Data
Imports System.Data.Common
Imports System.Globalization
Imports System.IO
Imports System.Linq

Namespace OneStream.BusinessRule.SmartIntegrationFunction.TestFileRead

Smart Integration Connector Guide 125

Business Rules

Public Class MainClass
Public Function RunOperation(ByVal year As String) As Byte()
Dim fname As String = "c:\temp\hw_" & year & ".csv"
Dim buffer As Byte() = System.IO.File.ReadAllBytes(fname)
Return buffer
End Function

Public Function GetOtherFileData(ByVal year As String) As Byte()
Dim fname As String = "c:\temp\zw_" & year & ".csv"
Dim buffer As Byte() = System.IO.File.ReadAllBytes(fname)
Return buffer
End Function

Public Function DeleteOldFileData(ByVal year As String) As Boolean
Dim fname As String = "c:\temp\zw_" & year & ".csv"

Try
 System.IO.File.Delete(fname)
Return True
Catch ex As IOException
Return False
End Try
End Function
End Class
End Namespace

Below is a remote business rule that queries a database and returns a datatable.

Here is the rule in C#:

// SIC Function referenced by other examples here
namespace OneStream.BusinessRule.SmartIntegrationFunction.GetDataFromDB
{
public class MainClass
{
private const string DataSourceName = "";
public DataTable RunOperation()
{
 DataTable dataTableResults = new DataTable();
string connectionString, sql;

 connectionString = OneStreamGatewayService.APILibrary.GetRemoteDataSourceConnection
(DataSourceName);

 SqlConnection conn;
 conn = new SqlConnection(connectionStringconn.Open());
 sql = ""; // Enter SQL Query here
 SqlCommand cmd = new SqlCommand(sql, conn);
var dbreader = cmd.ExecuteReader();
 dataTableResults.Load(dbreader);
return dataTableResults;

Smart Integration Connector Guide 126

Business Rules

 }
 }
}

Here is the rule in VB:

' SIC Function referenced by other examples here
Namespace OneStream.BusinessRule.SmartIntegrationFunction.GetDataFromDB
Public Class MainClass
Private Const DataSourceName As String = ""

Public Function RunOperation() As DataTable
Dim dataTableResults As DataTable = New DataTable()
Dim connectionString, sql As String
 connectionString = APILibrary.GetRemoteDataSourceConnection(DataSourceName)
Dim conn As SqlConnection
 conn = New SqlConnection(connectionStringconn.Open())
 sql = "" ' Enter SQL Query here
Dim cmd As SqlCommand = New SqlCommand(sql, conn)
Dim dbreader = cmd.ExecuteReader()
 dataTableResults.Load(dbreader)
Return dataTableResults
End Function
End Class
End Namespace

Here is an example of calling a TestFileRead remote business rule in C#.

// Here we are telling it to specifically call a remote Smart Integration Function called
TestFileRead at SIC Gateway
// called TestConnection with a method called DeleteOldFileData
var GatewayName = ""; // Name of the Gateway
var SICFunctionName = "TestFileRead"; // Name of the SIC Function from above example
var RemoteMethodName = "DeleteOldFileData"; // Name of the method inside the SIC Function
that will be called.
RemoteRequestResultDto objRemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, SICFunctionName, new object[] {"2024"},
GatewayName, RemoteMethodName);

if (objRemoteRequestResultDto.RemoteResultStatus ==
RemoteMessageResultType.RunOperationReturnObject && !
(objRemoteRequestResultDto.ObjectResultValue is null))
{
bool result;
if (bool.TryParse(objRemoteRequestResultDto.ObjectResultValue.ToString(), out result))
{
 BRApi.ErrorLog.LogMessage(si, "File Deleted: " + result.ToString());
 }
else

Smart Integration Connector Guide 127

Business Rules

{
 BRApi.ErrorLog.LogMessage(si, "Returned a non-boolean value");
 }
}
else
{
if (objRemoteRequestResultDto.RemoteException != null)
{
throw ErrorHandler.LogWrite(si, new XFException(si,
objRemoteRequestResultDto.RemoteException));
 }

}

return null;

Here is an example of calling a TestFileRead remote business rule in VB.NET.

'Here we are telling it to specifically call a remote Smart Integration Function called
TestFileRead at SIC Gateway
'called TestConnection with a method called DeleteOldFileData
Dim GatewayName As String = "" ' Name of the Gateway
Dim SICFunctionName As String = "TestFileRead" ' Name of the SIC Function from above example
Dim RemoteMethodName As String = "DeleteOldFileData" ' Name of the method inside the SIC
Function that will be called.
Dim argTest(0) As Object ' Creating an object array to package the method parameters
argTest(0) = "2024" ' First parameter is an integer

Dim objRemoteRequestResultDto As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, SICFunctionName, argTest, GatewayName,
RemoteMethodName)
If (objRemoteRequestResultDto.RemoteResultStatus =
RemoteMessageResultType.RunOperationReturnObject) Then
'The delete method returns a true/false return type
Dim result As Boolean
'ObjectResultValue introduced in v7.4 to simplify obtaining the return
'value from a method that doesn't return a Dataset/Datatable
 result = objRemoteRequestResultDto.ObjectResultValue
 BRApi.ErrorLog.LogMessage(si, "File Deleted: " & result)
Else
If (Not (objRemoteRequestResultDto.remoteException Is Nothing)) Then
Throw ErrorHandler.LogWrite(si, New XFException(si,
objRemoteRequestResultDto.remoteException))
End If
End if

Smart Integration Connector Guide 128

Business Rules

Here's an example to call the remote BR called "GetDataFromDB" (C#):

// Here we are telling it to specifically call a remote Smart Integration Function called
GetDataFromDB at SIC Gateway called TestConnection with a method called RunOperation
var GatewayName = ""; // Name of the Gateway
var SICFunctionName = "GetDataFromDB"; // Name of the SIC Function from above example
var RemoteMethodName = "RunOperation"; // Name of the method inside the SIC Function that
will be called.
var objRemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayBusinessRule(si,
SICFunctionName, null, GatewayName, RemoteMethodName);

if (objRemoteRequestResultDto.RemoteResultStatus == RemoteMessageResultType.Success
 && objRemoteRequestResultDto.ResultSet != null
 && objRemoteRequestResultDto.ResultType == RemoteResultType.DataTable)
{
 BRApi.ErrorLog.LogMessage(si, "Data Returned - Rows:" +
objRemoteRequestResultDto.ResultSet.Rows.Count);
}
else
{
if (objRemoteRequestResultDto.RemoteException != null)
{
throw ErrorHandler.LogWrite(si, new XFException(si,
objRemoteRequestResultDto.RemoteException));
 }
else
{
 BRApi.ErrorLog.LogMessage(si, "Remote Smart Integration Function Succeeded - no
data/datatable returned");
 }
}

Here's an example to call the remote BR called "GetDataFromDB" (VB):

' Here we are telling it to specifically call a remote Smart Integration Function called
GetDataFromDB at SIC Gateway called TestConnection with a method called RunOperation
Dim GatewayName As String = "" ' Name of the Gateway
Dim SICFunctionName As String = "GetDataFromDB" ' Name of the SIC Function from above
example
Dim RemoteMethodName As String = "RunOperation" ' Name of the method inside the SIC Function
that will be called.
Dim objRemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayBusinessRule(si,
SICFunctionName, Nothing, GatewayName, RemoteMethodName)

If objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.Success AndAlso
objRemoteRequestResultDto.ResultSet IsNot Nothing AndAlso
objRemoteRequestResultDto.ResultType = RemoteResultType.DataTable Then
 BRApi.ErrorLog.LogMessage(si, "Data Returned - Rows:" &
objRemoteRequestResultDto.ResultSet.Rows.Count)
Else
If objRemoteRequestResultDto.RemoteException IsNot Nothing Then
Throw ErrorHandler.LogWrite(si, New XFException(si,

Smart Integration Connector Guide 129

Business Rules

objRemoteRequestResultDto.RemoteException))
Else
 BRApi.ErrorLog.LogMessage(si, "Remote Smart Integration Function Succeeded - no
data/datatable returned")
End If
End If

GetRemoteDataSourceConnection
This remote business rule will return the connection string associated with a Local Gateway

Configuration Data Source.

NOTE: Requires allowRemoteCodeExec = True on Smart Integration Local Gateway.

Parameter details:

l Data Source: The name of the Local Gateway Configuration Data Source.

Here is the rule in C#:

// SIC Function to get configured connection string from SIC Gateway
namespace OneStream.BusinessRule.SmartIntegrationFunction.GetRemoteDataSourceSample
{
public class MainClass
{
public DataTable RunOperation()
{
 DataTable dataTableResults = new DataTable();

// Get the remotely defined connection string
string connectionString = OneStreamGatewayService.APILibrary.GetRemoteDataSourceConnection
(""); // enter name of DB Connection
 SqlConnection conn = new SqlConnection(connectionString);

// Insert custom code
return dataTableResults;
 }
 }
}

Smart Integration Connector Guide 130

Business Rules

Here is the rule in VB.NET:

' SIC Function to get configured connection string from SIC Gateway
Namespace OneStream.BusinessRule.SmartIntegrationFunction.GetRemoteDataSource_VB
Public Class MainClass
Public Shared Function RunOperation() As DataTable
Dim dataTableResults As New DataTable
' Get the remotely defined connection String
Dim connectionString As String =
OneStreamGatewayService.APILibrary.GetRemoteDataSourceConnection("") ' enter name of DB
Connection
Dim conn As SqlConnection = New SqlConnection(connectionString)
' Insert custom code

Return dataTableResults
End Function
End Class
End Namespace

GetRemoteGatewayJobStatus
This BR API returns the status or the results of a previously remotely queued job invoked against

a specified Smart Integration Connector Local Gateway host.

NOTE: Requires allowRemoteCodeExec = true on Smart Integration Service.

Parameter details:

l si: SessionInfo object used to create connection objects

l JobID: GUID of remote job ID returned upon successful call to ExecRemoteGatewayJob

l remoteHost: Name of remote host to invoke operation (Smart Integration Connector Name)

The sample below invokes a job as part of a data management job inside a OneStream extender

rule. The example demonstrates a simple Smart Integration Function that sleeps 2 seconds 1000

times in a loop simulating a long running task. The corresponding extender rule illustrates how this

long running function can be invoked as a job, returning a job ID and subsequently polled until it's

completed.

Smart Integration Connector Guide 131

Business Rules

It would be typical to invoke long running jobs as part of a Data management/Extender Rule and

the code below is an example on how this could be accomplished in C#:

[6:53 PM] Connor Shields
// Invoke long running job as part of a Data management/Extender rule
public object Main(SessionInfo si, BRGlobals globals, object api, ExtenderArgs args)
{
 Guid jobID;
 RemoteRequestResultDto objRemoteRequestResultDto = BRApi.Utilities.ExecRemoteGatewayJob(si,
"LongRunningTest", null/* TODO Change to default(_) if this is not a reference type */,
"testConnection", string.Empty);

if ((objRemoteRequestResultDto.RemoteResultStatus == RemoteMessageResultType.JobRunning))
{
 jobID = objRemoteRequestResultDto.RequestJobID;
 BRApi.ErrorLog.LogMessage(si, "Remote Job Queued and Running - JobID: " + jobID.ToString
());

for (var loopControl = 0; loopControl <= 10; loopControl++)
{
 System.Threading.Thread.Sleep(2000);
 RemoteJobStatusResultDto objJobStatus = BRApi.Utilities.GetRemoteGatewayJobStatus(si,
jobID, "testconnection2");
if ((objJobStatus.RemoteJobState == RemoteJobState.Running))
 BRApi.ErrorLog.LogMessage(si, "Remote Job Still running - JobID: " + jobID.ToString());
else if ((objJobStatus.RemoteJobState == RemoteJobState.Completed)
)
{
// Checking the return type from the remote job
if (!(objJobStatus.RemoteJobResult.ResultSet == null))
{
var xfDT = new XFDataTable(si, objJobStatus.RemoteJobResult.ResultSet, null, 1000);
 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Datatable Returned - JobID: " +
jobID.ToString());
return null;
 }
else if (!(objJobStatus.RemoteJobResult.ResultDataSet == null))
{
var xfDT = new XFDataTable(si, objJobStatus.RemoteJobResult.ResultDataSet.Tables[0], null,
1000);
 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Dataset Returned - JobID: " +
jobID.ToString());
 }
else if (!(objJobStatus.RemoteJobResult.ObjectResultValue == null))
{
 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Object Returned - JobID: " +
jobID.ToString());
return null;
 }
 }
else if ((objJobStatus.RemoteJobState == RemoteJobState.JobNotFound))
{
 BRApi.ErrorLog.LogMessage(si, "Remote Job Not Found - JobID: " + jobID.ToString());
return null;

Smart Integration Connector Guide 132

Business Rules

 }
else if ((objJobStatus.RemoteJobState == RemoteJobState.RequestTimeOut))
{
 BRApi.ErrorLog.LogMessage(si, "Remote Job Timed Out - JobID: " + jobID.ToString());
return null;
 }
else if ((objRemoteRequestResultDto.RemoteResultStatus ==
RemoteMessageResultType.Exception))
 BRApi.ErrorLog.LogMessage(si, "Exception During Exeuction of Job: " +
objRemoteRequestResultDto.RemoteException.ToString());
 }
 }
else if ((objRemoteRequestResultDto.RemoteResultStatus ==
RemoteMessageResultType.Exception))
 BRApi.ErrorLog.LogMessage(si, "Exception Executing Job: " +
objRemoteRequestResultDto.RemoteException.ToString());
else
 BRApi.ErrorLog.LogMessage(si, "General Job Execution Error - State: " +
objRemoteRequestResultDto.RemoteResultStatus.ToString());
return null;
}

Here is the example in VB:

' Invoke long running job as part of a Data management/Extender rule
Public Function Main(ByVal si As SessionInfo, ByVal globals As BRGlobals, ByVal api
As Object, ByVal args As ExtenderArgs) As Object
Dim jobID As Guid
Dim objRemoteRequestResultDto As RemoteRequestResultDto =
BRApi.Utilities.ExecRemoteGatewayJob(si, "LongRunningTest", Nothing,
"testConnection",String.Empty)

If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.JobRunning) Then
 jobID = objRemoteRequestResultDto.RequestJobID
 BRApi.ErrorLog.LogMessage(si, "Remote Job Queued and Running - JobID: " & jobID.ToString())
'Example waiting 20 seconds for job to complete
For loopControl = 0 To 10
 System.Threading.Thread.Sleep(2000)
Dim objJobStatus As RemoteJobStatusResultDto = BRApi.Utilities.GetRemoteGatewayJobStatus
(si, JobID, "testconnection2")
If (objJobStatus.RemoteJobState = RemoteJobState.Running)
 BRApi.ErrorLog.LogMessage(si, "Remote Job Still running - JobID: " & jobID.ToString())
Else If (objJobStatus.RemoteJobState = RemoteJobState.Completed)
' Checking the return type from the remote job
If (Not objJobStatus.RemoteJobResult.ResultSet Is Nothing) Then
Dim xfDT = New XFDataTable(si,objJobStatus.RemoteJobResult.ResultSet,Nothing,1000)
 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Datatable Returned - JobID: " &
jobID.ToString())
Return Nothing
Else If (Not objJobStatus.RemoteJobResult.ResultDataSet Is Nothing) Then
Dim xfDT = New XFDataTable(si,objJobStatus.RemoteJobResult.ResultDataSet.Tables
(0),Nothing,1000)

Smart Integration Connector Guide 133

Business Rules

 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Dataset Returned - JobID: " &
jobID.ToString())
Return Nothing
Else If (Not objJobStatus.RemoteJobResult.ObjectResultValue Is Nothing) Then
 BRApi.ErrorLog.LogMessage(si, "Remote Job Completed - Object Returned - JobID: " &
jobID.ToString())
Return Nothing
End If
Else If (objJobStatus.RemoteJobState = RemoteJobState.JobNotFound)
 BRApi.ErrorLog.LogMessage(si, "Remote Job Not Found - JobID: " & jobID.ToString())
Return Nothing
Else If (objJobStatus.RemoteJobState = RemoteJobState.RequestTimeOut)
 BRApi.ErrorLog.LogMessage(si, "Remote Job Timed Out - JobID: " & jobID.ToString())
Return Nothing
Else If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.Exception)
 BRApi.ErrorLog.LogMessage(si, "Exception During Exeuction of Job: " &
objRemoteRequestResultDto.RemoteException.ToString())
End If
Next
Else ' Exception occuring immediately during compile/initial run
If (objRemoteRequestResultDto.RemoteResultStatus = RemoteMessageResultType.Exception)
 BRApi.ErrorLog.LogMessage(si, "Exception Executing Job: " &
objRemoteRequestResultDto.RemoteException.ToString())
Else
 BRApi.ErrorLog.LogMessage(si, "General Job Execution Error - State: " &
objRemoteRequestResultDto.RemoteResultStatus.ToString())
End If
End If
Return Nothing
End Function

GetSmartIntegrationConfigValue
This BR API allows access to the Local Gateway Local Application Data Settings. Accessing the

remotely stored secret or customer-defined configuration values is done using a new "Remote"

equivalent of the BR API namespace. This feature can be used to:

l Reference configuration parameters in a remote business rule running on a Smart

Integration Connector Local Gateway Server

l Store credentials to network resources allowing the developer of remote business rules to

reference values stored in the configuration file instead of having them hard-coded and

viewable by anyone with permission to edit a business rule.

Smart Integration Connector Guide 134

Business Rules

These configuration values are defined and edited using the Smart Integration Connector Local

Gateway Configuration Utility. The API used to obtain these values is demonstrated in the full

business rule example below:

NOTE: Requires allowRemoteCodeExec = True on Smart Integration Local Gateway.

Here is the rule in C#:

// SIC Function demonstrating GetSmartIntegrationConfigValue
namespace TestProject.OneStream.BusinessRule.SmartIntegrationFunction.SecretTester
{
public class MainClass
{
public static @bool RunOperation()
{
string result;
// APILibrary is the class containing new remote BRAPI methods
// GetSmartIntegrationConfigValue returns the string value of a found configuration
// element -- returns empty string if the specified key is not found
 result = APILibrary.GetSmartIntegrationConfigValue(""); //Enter config value name
return true;
 }
 }
}

Here is another example in VB.NET:

' SIC Function demonstrating GetSmartIntegrationConfigValue

Namespace OneStream.BusinessRule.SmartIntegrationFunction.SecretTester

Public Class MainClass
Public Shared Function RunOperation() as bool
Dim result As String
' APILibrary is the class containing new remote BRAPI methods
' GetSmartIntegrationConfigValue returns the string value of a found configuration
' element -- returns empty string if the specified key is not found
 result = APILibrary.GetSmartIntegrationConfigValue("") ' Enter config value name
Return True
End Function
End Class
End NameSpace

Smart Integration Connector Guide 135

Business Rules

GetGatewayConnectionInfo
From a OneStream business rule, you can invoke this API to obtain connection details such as:

l GatewayName: Name of the remote gateway

l GatewayVersion: Version of the Smart Integration Connector Gateway Service running on

the remote host

l RemoteGatewayPortNumber: Bound Port at Gateway, the port of the remote service this

direct connection is associated with.

l RemoteGatewayHost: Name of the remote host associated with the direct connection.

l OneStreamPortNumber: Bound Port in OneStream, the port number defined within

OneStream that refers/maps to the specified direct connection.

l SmartIntegrationGatewayType: Type of the Smart Integration Connection (0= Gateway

Connection, 1= Direct Connection)

This API is useful for direct connections where the port number is required before connecting to

remote services such as sFTP or remote Web APIs because each endpoint defined in OneStream

to Smart Integration Connector Local Gateways has a different port number and would need to be

known by the business rule developer at design time. This API makes it easy to look up the

remote port by knowing the name of the direct connection defined in OneStream. It returns other

useful information outlined below:

Here is the rule in C#:

// GetGatewayConnectionInfo
var GatewayName = "" //Name of the Gateway
GatewayDetails gatewayDetailInformation = BRApi.Utilities.GetGatewayConnectionInfo(si,
GatewayName);
int oneStreamPortNumber = gatewayDetailInformation.OneStreamPortNumber;

Smart Integration Connector Guide 136

Business Rules

Here is the rule in VB:

' GetGatewayConnectionInfo
Dim GatewayName As String = "" ' Name of the Gateway
Dim objGatewayDetails As GatewayDetails = BRApi.Utilities.GetGatewayConnectionInfo(si,
GatewayName)
Dim oneStreamPortNumber As Integer = objGatewayDetails.OneStreamPortNumber

Check OneStream Version
Remote business rules have the ability to provide logic based on the OneStream Version.

Here is the example rule in C#:

namespace OneStream.BusinessRule.SmartIntegrationFunction.version_test_csharp
{

public class MainClass
{

public string RunOperation()
{

#if ONESTREAM8_4_0_OR_GREATER
// Code if true

#else
// Code if false

#endif
 }
 }
}

Here is the example rule in VB:

Namespace OneStream.BusinessRule.SmartIntegrationFunction.version_test_vb
Public Class MainClass

Public Shared Function RunOperation() As String
#If ONESTREAM8_4_0_OR_GREATER

' Code if true
#Else

' Code if false
#End If

End Function
End Class

End Namespace

Smart Integration Connector Guide 137

Business Rules

BRApi.Utilities.IsGatewayOnline
The following business rule can check the status of Smart Integration Connector. You will need to

replace "gateway-name" with the name of the gateway to be tested.

Here is the rule in C#:

// IsGatewayOnline

namespace OneStream.BusinessRule.Extender.TestHealthCheck
{
public class MainClass
{
public const string GatewayName = "";

public object Main(SessionInfo si, BRGlobals globals, object api, ExtenderArgs args)
{
try
{
TestGatewayConnection(si, GatewayName);
return null;
 }
catch (Exception ex)
{
throw ErrorHandler.LogWrite(si, new XFException(si, ex));
 }
 }

public void TestGatewayConnection(SessionInfo si, string gwName)
{
bool response = BRApi.Utilities.IsGatewayOnline(gwName);

if (response)
{
 BRApi.ErrorLog.LogMessage(si, $"Health Check Successful for {gwName}");
 }
else
{
 BRApi.ErrorLog.LogMessage(si, $"Health Check Failed for {gwName}");
 }
 }
 }
}

Smart Integration Connector Guide 138

Business Rules

Here is the rule in VB:

Namespace OneStream.BusinessRule.Extender.TestHealthCheck
Public Class MainClass
Public Const GatewayName As String = ""

Public Function Main(ByVal si As SessionInfo, ByVal globals As BRGlobals, ByVal api
As Object, ByVal args As ExtenderArgs) As Object
Try
 TestGatewayConnection(si, GatewayName)
Return Nothing
Catch ex As Exception
Throw ErrorHandler.LogWrite(si, New XFException(si, ex))
End Try
End Function

Public Sub TestGatewayConnection(ByVal si As SessionInfo, ByVal gwName As String)
Dim response As Boolean = BRApi.Utilities.IsGatewayOnline(gwName)

If response Then
 BRApi.ErrorLog.LogMessage(si, $"Health Check Successful for {gwName}")
Else
 BRApi.ErrorLog.LogMessage(si, $"Health Check Failed for {gwName}")
End If
End Sub
End Class
End Namespace

Smart Integration Connector Guide 139

Business Rules

Business Rules Compatibility
There are some business rules that are not compatible with Smart Integration Connector. If you

attempt certain rules, you will run into the following error: This BR API is not compatible with Smart

Integration Connector. Refer to Smart Integration Connector Remote BRs.

The following business rules are not compatible with Smart Integration Connector:

BRApi.Database.SaveCustomDataTable
Although, this business rule is not supported, the functionality can be achieved through a remote

business rule. You can call this business rule using

BRApi.Utilities.ExecRemoteGatewayBusinessRule.

Here is the rule in C#:

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.SqlClient;
using System.Data.Common;
using System.Globalization;
using System.IO;
using System.Linq;

namespace OneStream.BusinessRule.SmartIntegrationFunction.SaveCustomDataTable
{

public class MainClass
{

public void RunOperation()
{

var tableName = ""; // Enter the name of the table to update
var connectionName = ""; // Enter the name of the configured database

connection
var connString =

OneStreamGatewayService.APILibrary.GetRemoteDataSourceConnection(connectionName);
var dataTable = new DataTable();
using (var connection = new SqlConnection(connString))
{

 connection.Open();

Smart Integration Connector Guide 140

Business Rules Compatibility

var sql = $"SELECT * FROM {tableName}";
var cmd = new SqlCommand(sql, connection);
var adapter = new SqlDataAdapter();

 adapter.SelectCommand = cmd;
var commandBuilder = new SqlCommandBuilder(adapter);

 adapter.Fill(dataTable);
// Add logic here to update values in DataTable
// Update database with changes to the DataTable

 adapter.UpdateCommand = commandBuilder.GetUpdateCommand();
 adapter.Update(dataTable);
 }
 }
 }
}

Here is the same rule VB:

Imports System
Imports System.Collections.Generic
Imports System.Data
Imports System.Data.Common
Imports System.Globalization
Imports System.IO
Imports System.Linq
Namespace OneStream.BusinessRule.SmartIntegrationFunction.SaveCustomDataTableVB

Public Class MainClass
Public Sub RunOperation()
Dim tableName = "" ' Enter the name of the table to update
Dim connectionName = "" ' Enter the name of the configured database

connection
Dim connString = OneStreamGatewayService.APILibrary.GetRemoteDataSourceConnection

(connectionName)
Dim dataTable = New DataTable()
Using connection = New SqlConnection(connString)

 connection.Open()
Dim sql = $"SELECT * FROM {tableName}"
Dim cmd = New SqlCommand(sql, connection)
Dim adapter = New SqlDataAdapter()

 adapter.SelectCommand = cmd
Dim commandBuilder = New SqlCommandBuilder(adapter)

 adapter.Fill(dataTable)
' Add logic here to update values in DataTable
' Update database with changes to the DataTable

 adapter.UpdateCommand = commandBuilder.GetUpdateCommand()
 adapter.Update(dataTable)

End Using
End Sub

End Class
End Namespace

Smart Integration Connector Guide 141

Business Rules Compatibility

BRApi.Database.InsertOrUpdateRow
BRApi.Database.DeleteRows
Although, these business rules are not supported, inserting, deleting and updating rows can be

accomplished through the same remote business rule referenced above. You can call this

business rule using BRApi.Utilities.ExecRemoteGatewayBusinessRule. You will insert your logic

at the specific comment in the remote business rule.

SQL Bulk Copy
Use of the SQL Bulk Copy class is not supported to copy to and from databases accessed over

Smart Integration Connector. Currently, there is not a workaround available.

SQL Transactions
Use of the SqlTransaction class is currently only supported in Smart Integration Connector

Functions / remote business rules.

Smart Integration Connector Guide 142

Business Rules Compatibility

Limitations
This section details a list of known limitations in Smart Integration Connector.

Business Rule Compatibility
The Smart Integration Connector supports business rule APIs (BR APIs) to allow for execution

and management of remote business rules inside the context of the Smart Integration Connector

Local Gateway Server. Some OneStream Business Rules are not supported. For compatible

Business Rules, see Business Rules.

Parquet Format Transfer
Smart Integration Connector transfers data in Apache Parquet format from the Local Gateway

Service to your OneStream cloud instance. If you are transferring a data type that is not fully

supported by parquet, the data returns as a string. If the data type can not be converted to

parquet, you may have to cast the data type in your query.

Example for datetimeoffset:

l SELECT CAST(your_datetimeoffset_column AS VARCHAR(50)) AS formatted_datetime

FROM your_table;

For additional information, see Troubleshooting.

Smart Integration Connector Guide 143

Limitations

Returning Multiple DataTables with Remote
Business Rules
If you are returning multiple DataTables in a DataSet from a Remote Business Rule, the maximum

number of combined rows and size are around 2 million rows and 2GB of data.

Custom Email Connections
Email over Smart Integration Custom ("Notification Connection" in Data Management jobs)

Connections is not supported. Remote BRs do support email in Smart Integration Connector.

FTP Transfers
sFTP is supported by the use of SSH.NET. FTP is currently not supported for SSH.NET. Use

sFTP for all file transfers.

Internal Certificate Trust
Certificates issued by an internal domain controller cannot be trusted by OneStream.

SQL Table Editor
If you plan on modifying data with SQL Table Editor using Smart Integration Connector, then you

will need to write back data with a custom business rule using the Execute Dashboard Extender
Business Rule feature under the Save Data Server Task action.

Smart Integration Connector Guide 144

Limitations

Precision using Decimals
When transmitting data through Smart Integration Connector, numeric values exceeding certain

lengths may be rounded. The following workarounds can help maintain data precision.

Receiving Data from Smart Integration Connector

Smart Integration Connector queries can only return numeric values with up to 38 total digits: 20

integer digits to left of the decimal point and 18 fractional digits to the right of the decimal point.

For example, returning a column with a value of 123456789123456789123 (21 digits) is not

supported. Even though there is no decimal point, it still exceeds 20 integer digits, which is the

maximum amount.

Similarly, returning a column with a value of 0.1234567891234567891 (19 decimal digits) is not

supported, as it contains more than 18 digits on the right side of the decimal point.

If your queries can return values that require more than 20 integer digits or 18 fractional digits,

consider casting to a VARCHAR as the following:

l "SELECT CAST(123456789123456789123 AS VARCHAR)" -- 21 integer

digits

If there is no risk of overflowing the opposite side of the decimal point, you can also divide by a

factor of 10 to shift right or multiply by a factor of 10 to shift left. This approach is more efficient

than casting to a VARCHAR

For example:

Smart Integration Connector Guide 145

Limitations

l SELECT 123456789123456789123 / 100 -- 21 integer digits will shift

by two digits to the right

l SELECT 0.1234567891234567890 * 100 -- 19 fractional digits will

shift by two digits to the left

Sending Data to Smart Integration Connector

For sending either a DataTable or a CompressionResult into a remote rule, Smart Integration

Connector can only return numeric values with up to 18 characters of significance. Values with

more than 18 significant digits will lose precision.

For example, when sending a DataTable into Smart Integration Connector, a value of

1234567890123456789.123456 (25 significant digits) will become 1234567890123456800 (17

significant digits).

Similarly, sending a CompressionResult with a value of 123456789012345.123456 (21 significant

digits) will become 123456789012345.13 (17 significant digits).

NOTE: This precision limit is a ceiling, not a typical round.

If you are confident that the data will not reach 18 significant digits, no action is needed. If you

anticipate that the data sent into Smart Integration Connector will reach this limit, consider using

this Business Rule Extender:

namespace OneStream.BusinessRule.Extender.SIC_PrecisionDemo_Extender
{

public class MainClass
{

public const string remoteGatewayName = ""; // Enter
gateway name

const decimal OriginalValue = 1234567890123456.12M; // 18 total
digits

public object Main(SessionInfo si, BRGlobals globals, object api,
ExtenderArgs args)

{

Smart Integration Connector Guide 146

Limitations

// dataTable with a single row containing OriginalValue
above

var dataTable = new System.Data.DataTable
("TestDataTable");
 dataTable.Columns.Add("DecimalColumn", typeof(decimal));

// Add the original value to the datatable
var row = dataTable.NewRow();

 row["DecimalColumn"] = OriginalValue;
 dataTable.Rows.Add(row);

// base64-encoded string version of dataTable
var base64 = GetBase64EncodedDataTable(dataTable);

// pass both the raw dataTable and encoded version as
two separate arguments to the Remote Business Rule

var arguments = new object[]{dataTable, base64};

var resultObject =
BRApi.Utilities.ExecRemoteGatewayBusinessRule(si, "SIC_PrecisionDemo", arguments,
remoteGatewayName, "RunOperation");

/*
 resultObject.ObjectResultValue: "
 WITHOUT encoding: values don't match --
Expected 1234567890123456.12 -- Actual 1.23456789012346E+15.
 WITH encoding: values should match --
Expected 1234567890123456.12 -- Actual 1234567890123456.12.
 "
 */

return null;
 }

public string GetBase64EncodedDataTable(DataTable dt)
{

var serializer = new
System.Runtime.Serialization.DataContractSerializer(typeof(DataTable));

var memoryStream = new System.IO.MemoryStream();
 serializer.WriteObject(memoryStream, dt);

var bytes = memoryStream.ToArray();
return Convert.ToBase64String(bytes);

 }
 }
}

To test the Extender, use this Remote Business Rule:

namespace OneStream.BusinessRule.SmartIntegrationFunction.SIC_PrecisionDemo
{

public class MainClass
{

const decimal ExpectedValue = 1234567890123456.12M; // 18 total
digits

Smart Integration Connector Guide 147

Limitations

public string RunOperation(DataTable dataTable, string base64)
{

// Retrieve and log raw dataTable
var retrievedValue = dataTable.Rows[0]["DecimalColumn"];
var message = $"WITHOUT encoding: values don't match --

Expected {ExpectedValue} -- Actual {retrievedValue}.";

// Retrieve and log encoded data table
var bytes = Convert.FromBase64String(base64);
var memoryStream = new System.IO.MemoryStream(bytes);
var serializer = new

System.Runtime.Serialization.DataContractSerializer(typeof(DataTable));
var dt = (DataTable)serializer.ReadObject(memoryStream);
var correctValue = dt.Rows[0]["DecimalColumn"];

 message += $"\nWITH encoding: values should match --
Expected {ExpectedValue} -- Actual {correctValue}.";

return message;
 }
 }
}

Smart Integration Connector Guide 148

Limitations

Troubleshooting
This section provides help on addressing errors in Smart Integration Connector.

Error Log
To view the error log, click System > Logging > Error Log.

Every minute, by default, the Smart Integration Connector tries to connect to an established Smart

Integration Connector local gateway from each application server used in a deployment. If the

gateway is unable to connect, it adds an error to the error log based on theGateway failures
reporting interval (min). These errors are recorded in the OneStream error log along with other
errors related to the OneStream application. You can configure the interval at which OneStream

application servers log this gateway failure from 1 minute to 1440 minutes (1 day) to reduce the

volume of logged failures for infrequently online test or validation environments.

NOTE: It is recommended to increase the time intervals for queries that run longer than
five minutes. For example, if you have a query that runs ten minutes long, you need to

set your time interval to above ten minutes (such as fifteen minutes). Time intervals can

be adjusted from System > Smart Integration Connector > Your connection >
Gateway failures reporting interval (min).

Smart Integration Connector Guide 149

Troubleshooting

Common Errors

Memory Issues

If you receive any of the following errors, increase the memory in your Smart Integration

Connector Local Gateway Server. For queries returning over 1 million records, 32 GB or more

RAM is recommended.

l "Error while copying content to a stream. Received an unexpected EOF or 0 bytes from the

transport stream."

l "An error occurred while sending the request. The response ended prematurely."

Gateway Version is Empty

If your connection is reporting online, is of type "Gateway Connection" and the Version is empty,

verify with your IT Admin that port 443 is fully open outbound between the Smart Integration

Connector Local Gateway Server and the Azure Relay and that Deep Packet Inspection or SSL

Teardown is not being performed.

Refer to Knowledge Base article KB0013213 for additional information.

Smart Integration Connector Guide 150

Troubleshooting

Custom Data Source Names

You may not see the Data Source Names populate when setting up the custom connection with a

new connection. It is recommended to wait for five minutes from creating a new connection to

when you create the custom connection.

Array cannot be null Error

You receive the error: "Array cannot be null. (Parameter 'bytes')" or "System.AggregateException

- System.NullReferenceException: Object reference not set to instance of object"

Smart Integration Connector Guide 151

Troubleshooting

NOTE: CompressionHelper.InflateJsonObject is now automatically executed as part of

remote calls resulting in serialized .NET types returned from the Smart Integration

Connector Gateway. Update any Smart Integration Connector related business rules

accordingly.

Previously, it was required that a OneStream BR developer invoking a remote Smart

Integration Function be aware of the data type returned and convert accordingly after the

result is returned. An example where the returned result was a byte array involved code

that appeared as follows:

Example:

bytesFromFile = CompressionHelper.InflateJsonObject(Of System.Byte())
(si,objRemoteRequestResultDto.resultDataCompressed)
' The Smart Integration Connector Gateway now provides this type information back to
OneStream
' and streamlines this conversion process using a newly added property called
' ObjectResultValue which is populated.
' When invoking the same operation shown above that previously required
' the type to be converted, a BR developer can do the following:
bytesFromFile = objRemoteRequestResultDto.ObjectResultValue

Opening and Saving Configuration Errors

You may receive an error opening or saving your OneStream Local Gateway Configuration after

installing Oracle Data Provider for .NET.

You must comment out the following line <!--<add name="Oracle Data Provider for .NET"

invariant="Oracle.DataAccess.Client" description=".Net Framework Data Provider for Oracle"

type="Oracle.DataAccess.Client.OracleClientFactory, Oracle.DataAccess" />--> when editing

your OneStreamLocalGatewayConfiguration.exe.config to resolve this error.

Your configuration should look similar to this:

Smart Integration Connector Guide 152

Troubleshooting

<DbProviderFactories>
<add name="Npgsql Data Provider" invariant="Npgsql" description="Data Provider for
PostgreSQL" type="Npgsql.NpgsqlFactory, Npgsql" />
<add name="MySQL Data Provider" invariant="MySql.Data.MySqlClient" description=".Net
Framework Data Provider for MySQL" type="MySql.Data.MySqlClient.MySqlClientFactory,
MySql.Data" />
<!--<add name="Oracle Data Provider for .NET" invariant="Oracle.DataAccess.Client"
description=".Net Framework Data Provider for Oracle"
type="Oracle.DataAccess.Client.OracleClientFactory, Oracle.DataAccess" />-->

Incorrect or Missing Library References

During compilation of remote business rules using .NET DLLs such as the ERPConnect Library to

interface with SAP, incorrect or missing library references will result in an error similar (Smart

Integration Connector compile error) to the image below.

Script Error During Upgrade
During upgrades, you may run into the error "a script required for this install to complete could not

be run." The action to resolve this error is to rerun the Smart Integration Connector installer. If you

continue to see this error during upgrades, contact OneStream support.

Smart Integration Connector Guide 153

Troubleshooting

Data Returned as a String
Occasionally, data types can return as a string when you are expecting to see data in the original

source format. Smart Integration Connector transfers data in Apache Parquet format from the

Local Gateway Service to OneStream. If you are transferring a data type that is unsupported by

parquet, the data converts and returns as string. You will need to add logic to re-convert the string

to the desired and supported data type if needed.

In certain cases, if you receive the error "The method or operation is not implemented" then you

can use a remote business rule to transfer data. This occurs when returning the varbinary(max)

datatype.

Manual Start and Stop
If you run into errors with the service, you may need to manually stop and restart the service. This

can be accomplished in the GUI-based Services control manager as shown below or by using the

command-prompt/PowerShell. The name of the service when using command-line tools is

"OneStreamSmartIntegration".

Using the Windows Service Control Manager:

Smart Integration Connector Guide 154

Troubleshooting

1. Open Services from your Windows start menu.

2. Right-click onOneStream Smart Integration Connector Gateway.

3. Select Stop.

4. Right-click again and select Start.

Using an elevated command-prompt:

1. net stop OneStreamSmartIntegration

2. net start OneStreamSmartIntegration

Using an elevated PowerShell prompt:

1. stop-service -ServiceName OneStreamSmartIntegration

2. start-service -ServiceName OneStreamSmartIntegration

Smart Integration Connector Guide 155

Troubleshooting

Remote Endpoint Not Found/Could Not
Decrypt
To troubleshoot the errors "Remote Endpoint Not Found" or "Could not decrypt connection string

on Smart Integration Connector Gateway Connection: [Connection Name]", check your service

account permissions. The service account used will require local administrative rights to access

resources on the Windows server, such as the machine certificate store and private keys used for

encryption.

ERPConnect Module or Dependency Not
Found
When executing a Smart Integration Function that uses ERPConnect, an error may occur that

indicates that the ERPConnect DLL or one of its dependencies was not found or did not load. For

additional information, refer to Knowledge Base article KB0013553.

If the DLL is located in the correct folder, Windows security policies are preventing the DLL from

loading and the file must be unblocked. settings may be preventing

To unblock the DLL:

Smart Integration Connector Guide 156

Troubleshooting

https://onestreamsoftware.service-now.com/sp_internal?id=kb_article&sysparm_article=KB0013553

1. Right click the DLL file and then select Properties.

2. In theGeneral tab, select Unblock and then selectOK.

3. Restart the Smart Integration Connector gateway. For details, refer to Restart the Smart

Integration Connector Gateway.

Smart Integration Connector Guide 157

Troubleshooting

Connections Requiring a Signed Certificate
For connections that require a signed certificate in order to establish a connection, then a

Certificate Authority (CA) needs to be accessible from the Smart Integration Connector Local

Gateway Server in order to function.

l Gateway Connections: CA needs to be accessible from the Smart Integration Connector

Local Gateway Server.

l Direct Connections: CA needs to be publicly accessible from OneStream.

Trusted Certificate Chain
If you are using Smart Integration Functions and set the SQL Server connection string within the

function, you may receive the following error:

A connection was successfully established with the server, but then an error occurred during the

login process. (provider: SSL provider, error: 0 - The certificate chain was issued by an authority

that is not trusted.)

Smart Integration Connector Guide 158

Troubleshooting

If you do not have a trusted certificate installed on your DB server, you can work around this with

TrustServerCertificate. However, this workaround is less secure and discouraged in production

environments. To resolve this error, include TrustServerCertificate=True; to your connection
string within the function.

Unable to Connect
If your connection fails, check your Smart Integration Connector error log for:

[2023-10-04 07:09:59 INF] Starting Listener for: <site name>.servicebus.windows.net

[2023-10-04 07:10:00 ERR] Unable to connect: Generic: Ip has been prevented to connect to the

endpoint.

To resolve this issue, verify that the IP addresses in your Whitelisting to the Azure Relay are set

up properly. See Advanced Networking andWhitelisting.

Communication Error
If you see the following error in the Windows Service Log, it means that you have a mismatched

WebAPIKey. This could occur if the WebAPI key is changed in OneStream and the configuration

for the Smart Integration Local Gateway service is not exported from OneStream and re-imported

into the Local Gateway Server service using the configuration utility.

[14:13:36 INF] HTTP Request with invalid API key

You can resolve this error by matching the WebAPIKey in the configuration utility.

NOTE: If the value is changed, you must restart the service.

Smart Integration Connector Guide 159

Troubleshooting

Host Header Communication Error

If you copy the business rule below and are having trouble communicating with your WebAPI after

compiling, ensure that you have set your host header correctly. Refer to highlights in the

screenshot below.

bytesFromFile = CompressionHelper.InflateJsonObject(Of System.Byte())
(si,objRemoteRequestResultDto.resultDataCompressed)
'The Smart Integration Connector Gateway now provides this type information back to
OneStream
'and streamlines this conversion process using a newly added property called
'ObjectResultValue which is populated.
'When invoking the same operation shown above that previously required
'the type to be converted, a BR developer can do the following:
bytesFromFile = objRemoteRequestResultDto.ObjectResultValue

<DbProviderFactories>
<add name="Npgsql Data Provider" invariant="Npgsql" description="Data Provider for
PostgreSQL" type="Npgsql.NpgsqlFactory, Npgsql" />
<add name="MySQL Data Provider" invariant="MySql.Data.MySqlClient" description=".Net
Framework Data Provider for MySQL" type="MySql.Data.MySqlClient.MySqlClientFactory,
MySql.Data" />
<!--<add name="Oracle Data Provider for .NET" invariant="Oracle.DataAccess.Client"
description=".Net Framework Data Provider for Oracle"
type="Oracle.DataAccess.Client.OracleClientFactory, Oracle.DataAccess" />-->

Smart Integration Connector Guide 160

Troubleshooting

Gateway Testing Issue Resolution
If your connection testing is failing, refer to the steps below to fully test the connection.

1. You can test the connection by double-clicking theOneStreamGatewayService.exe file

located in the installation folder.

NOTE: The Smart Integration Connector GatewayWindows Service must be in a

stopped state to run in the console for test purposes.

The following command window is displayed:

2. Correct any errors that are displayed in the command window.

Smart Integration Connector Guide 161

Troubleshooting

NOTE: If the command window output does not proceed beyond the

"APIServiceHostController Start Relay API startup successful." line, this indicates

that the outbound traffic over port 443 to the Azure Relay is blocked. Open the port

to resolve this issue.

3. In the OneStreamWindows Application client, refresh Connection Details from System >

Administration > SmartIntegration Connector > Your connection.

l The Instance Count changes from 0 to 1.

l The Status changes fromOffline toOnline. Additionally, status indicators turn green
on the side menu if the Connection isOnline, red if the Connection isOffline, and
yellow if the Connection isOffline but there is a newer version of the Local Gateway
Server available. See the second screenshot under this step for a close-up of the

indicators.

l The Version field shows the version of the running Smart Integration Connector
Gateway.

Smart Integration Connector Guide 162

Troubleshooting

4. Press Enter twice on the keyboard to stop the service in the command window and then

close the command window.

Smart Integration Connector Guide 163

Troubleshooting

Automatic Business Rule Decompression (Prior to
Version 8.0)

Prior to version 8.0, it was required that a OneStream Business Rule developer invoking a remote

Smart Integration Function be aware of the data type returned and convert accordingly after the

result is returned.

Example: An example where the returned result was a byte
array involved code that appeared as follows:

bytesFromFile = CompressionHelper.InflateJsonObject(Of System.Byte())
(si,objRemoteRequestResultDto.resultDataCompressed)

The Smart Integration Connector Gateway now provides this type of information back to

OneStream and streamlines this conversion process using a newly added property called

ObjectResultValue, which is populated.

When invoking the same operation shown above that previously required the type to be

converted, a BR developer can do the following:

bytesFromFile = objRemoteRequestResultDto.ObjectResultValue

bytesFromFile = CompressionHelper.InflateJsonObject(Of System.Byte())
(si,objRemoteRequestResultDto.resultDataCompressed)

bytesFromFile = objRemoteRequestResultDto.ObjectResultValue

Smart Integration Connector Guide 164

Troubleshooting

Frequently Asked Questions

Security and Network Configuration

Is Smart Integration Connector secure in comparison to
using a VPN?

Yes, see below:

l Smart Integration Connector is encrypted end to end using TLS.

l Smart Integration Connector is 100% customer managed. IT is able to configure all data

sources to OneStream.

l Database connection strings are encrypted upon saving.

l Smart Integration Connector is less invasive than VPN and is network friendly.

Are there any ports or IPs that need to be whitelisted in our
firewall to set up this connection? How can we whitelist the
Relay?

Smart Integration Connector Local Gateway Server requires port 443 outbound open to

communicate with the Azure Relay. If you need to further lock down the firewall, you can limit the

traffic outbound to go to *.servicebus.windows.net.

Smart Integration Connector Guide 165

Frequently Asked Questions

Is IP Whitelisting supported?

In OneStream v8.1 and higher, specific IPs or CIDRs, a range of IPs, can be whitelisted from the

OneStreamWindows Client Application. For details, see Advanced Networking andWhitelisting.

Configuration and Connectivity

Is there an easy way to see if my connection is online?

Yes. You can check the status within OneStream from the System/Smart Integration Connector

page. Look to see if the status of the connection you selected is online.

For gateway connections, if the version is empty and the status is online, you may have some

firewall rules that are blocking full connectivity over port 443.

Status indicators in the list of gateways provide a visual indication of theGateway status.

Smart Integration Connector Guide 166

Frequently Asked Questions

l Green: The Gateway isOnline.

l Red: The Gateway isOffline.

l Yellow: (Gateway Connections only) The Gateway isOnline and an update to the Local
Gateway Server is available.

NOTE: For Direct Connections, the yellow status is not displayed as these

connections do not report a version number back to OneStream.

Can I connect the Smart Integration Connector Gateway
Service to both DEV and PROD?

Yes, but this is not best practice. Customers in the past have tested large jobs in DEV that have

caused performance issues within PROD.

Can I connect to multiple SFTP servers?

Yes. You can set up direct connections to multiple SFTP servers.

Smart Integration Connector Guide 167

Frequently Asked Questions

Data Handling and Query Behavior

Are there data limitations we need to be concerned about?

Smart Integration Connector has a threshold limit of five million rows or five GB. Additional

CPU/RAM resources are required for large quantities of data. If this limit is exceeded, you will

receive a Smart Integration Connector Remote Query Error.

What if I have a query that returns null values?

Beginning in Version 8.2, queries that contain null values are now being returned. Prior to this, null

values would have to be replaced with something, like a zero.

Are there any restrictions on the time queries are allowed to
run?

Beginning in Version 8.2, queries that run longer than ten minutes will now return data.

Smart Integration Connector Guide 168

Frequently Asked Questions

Integration and API Usage

Can anything other than JSON format be returned when
using a WebAPI?

Any object type that can be wrapped in JSON can be returned.

Why would we use BR API verses Remote Code Execution of
Business Rules?

Remote code execution takes a simple OneStream BR and ships it to the Smart Integration

Connector Gateway to compile/run. The benefits of this are twofold:

l Customers can have a dependency on any third party .NET library they wish.

l Remote BRs support more complex data-ingestion scenarios as well. Picture data being

pulled frommultiple file shares on a customer's network, then being assembled/parsed and

shipped back to OneStream. Some of this work could be offloaded into the customer's

environment where direct access to the data is available.

What are some of the use cases for when we use the three
Remote Code Execution Options? Is there a Use Case for BR
API method?

There are four options for invoking things remotely on the Smart Integration Connector Gateway:

l ExecRemoteGatewayRequest: This is a general-purpose API that is used internally inside
OneStream to do everything on a remote endpoint. It is exposed to provide granular control

on timeouts or other custom scenarios.

Smart Integration Connector Guide 169

Frequently Asked Questions

l ExecRemoteGatewayBusinessRule: This takes a Smart Integration Function BR built in

OneStream and sends it to a specific Smart Integration Connector Gateway to compile/run.

It provides options to control caching to make it run faster on subsequent calls since BR will

already be compiled.

l ExecRemoteGatewayJob: This is similar to the second option listed above, but instead of
running synchronously and blocking things on OneStream, it is for long-running BRs. Think

of this like running a DM job on the Smart Integration Connector Gateway that can run for

up to thirty minutes. The status of the job is polled from OneStream to obtain the status and

gather the results.

l ExecRemoteGatewayCachedBusinessRule: This is a BR API to run a cached, previously

compiled BR on the Smart Integration Connector Gateway. This is seldom used.

Are there any specific Business Rule functions that are not
compatible with Smart Integration Connector?

For business rule compatibility, see Business Rules.

Maintenance and Reliability

How do I adjust the reporting interval for Smart Integration
Connector failures?

By default, failures will be reported every five minutes. It is recommended that you adjust the

reporting time intervals for queries that run for longer than five minutes.

Smart Integration Connector Guide 170

Frequently Asked Questions

Will OneStream upgrades stop the connections from
running?

NOTE: For OneStream v9.0, it is required to use Smart Integration Connector v9.0.

Although Smart Integration Connector is designed to be backwards compatible within major

versions, it is highly recommended and a best practice to always keep the two versions synced.

Host Headers

Cannot Communicate using a Direct Connection.

Connection issues:

l Check that the server is online.

l Make sure that the correct domain name is used.

l Verify that host header is included in the BR and configured correctly.

Is the Host Header required for all integrations?

No. It's only required for services that explicitly check for it. However, including it can help avoid

connectivity issues with certain APIs or load-balanced environments.

What value should I use for the Host Header?

Use the domain name of the target server (for example, api.example.com). This should match

what the server expects in incoming requests.

For a code example, refer to Obtain Data through aWebAPI.

Smart Integration Connector Guide 171

Frequently Asked Questions

Migration from VPN

I am migrating from a VPN solution to Smart Integration
Connector. is there anything I need to take into consideration
during migration?

Use the checklist below to prepare yourself for migrating from VPN to Smart Integration

Connector.

NOTE:While migrating, a VPN and Smart Integration Connector can be used in

tandem. This allows for A/B testing and validation prior to disconnecting the VPN tunnel.

Checklist Item Complete

Check if your VPN connection is used for securing authentication paths to

OneStream. Smart Integration Connector is not providing this capability,

however other considerations such as whitelisting IP access are options

see Modify Inbound Client Access Rules.

□

Determine how many VPN connections exist. If OneStream is integrating

with data sources frommultiple subnetworks, you may have multiple VPN

connections. This configuration can be managed with multiple Local

Gateway Servers.

□

Smart Integration Connector requires the installation and operation of a

Local Gateway Service. Make sure you have identified a Virtual Machine or

physical server to operate the Local Gateway Server. See Requirements.

□

Smart Integration Connector Guide 172

Frequently Asked Questions

https://onestreamsoftware.service-now.com/sp_internal?id=sc_cat_item&table=sc_cat_item&sys_id=9e4c18c81b156d100020a935604bcb7f

Take inventory of what you currently use for example, business rules,

workspaces, queries, grid views, drill-backs, and whitelisted endpoints for

each plan for any updates needed when using Smart Integration

Connector.

□

Set up a time with your OneStream Cloud Support Representative to plan

when the VPN can be disconnected.

□

Troubleshooting
See Troubleshooting.

Smart Integration Connector Guide 173

Frequently Asked Questions

	Revision History
	About This Guide
	Benefits
	Common Understanding
	OneStream Client Application Terms
	OneStream Local Gateway Configuration Terms

	Architecture
	TLS/SSL Certificate
	Additional Considerations

	Requirements
	OneStream Smart Integration Connector Environment Setup
	Advanced Networking and Whitelisting

	Upgrade Smart Integration Connector
	Upgrade from

	Setup and Installation
	Smart Integration Connector Setup Overview
	Smart Integration Connector Terms
	Local Gateway Server Installation

	Create a Gateway Connection
	Create a Direct Connection (Optional)
	Export and Import the Connection Configuration
	New Key Generation
	Connect a Local Gateway to a Data Source
	Microsoft SQL Server
	MySQL Data Provider
	Oracle Database Examples
	OracleClient Database Provider
	Oracle Data Provider for .NET

	PostgreSQL (Npgsql Data Provider)
	OleDb Data Provider
	ODBC Data Provider
	(Optional) Remove UserID and Passwords by Integrated Security
	Update the Local Gateway Connection String
	Update Permissions on the OneStream Smart Integration Connector Gateway Service
	Test the Updated Integrated Connection String

	Microsoft Entra Authentication for Azure SQL

	Restart the Smart Integration Connector Gateway
	Load Balanced Local Gateway Servers
	Create a Load Balanced Local Gateway Server

	Define Custom Database Connections in OneStream System Configuration Setup

	Smart Integration Additional Settings
	Local Application Data Settings
	Referenced Assemblies Folder
	Allow Remote Code Execution
	Web API Bound Port
	Maximum Records to Return when Paging
	Maximum Records to Return
	Row Count to Begin Paging Operations
	Local Configuration Parameters

	Log Settings

	Advanced Networking and Whitelisting
	Restrict Traffic to the Azure Relay
	Whitelist Outbound Traffic to Azure Relay Service from your Firewall
	Allow Traffic using Wildcard Domain (Best Practice)
	Allow Traffic using IP addresses (Not Recommended)

	Use Smart Integration Connector
	Data Adapters Example
	SQL Table Editor Example
	Grid View Example
	Perform a Drill Back
	Perform a Write Back
	Support for SFTP
	C# SFTP Example
	VB STFP Example

	Transfer Files from Local FileShare
	Step 1 - Setup the Remote Server / Remote Share
	Step 2 - Pull file from Extender Business Rule
	Step 3 - Automate from Data Management / Task Scheduler

	Obtain Data through a WebAPI
	Host Headers
	Access a Single WebAPIs
	Access Multiple WebAPIs

	Send Emails through Smart Integration Direct Connections
	Support for DLL Migration
	SAP Connections
	Connect with the SAP Connector (Best Practice)
	Connect with the ERPConnect (SAP)

	Business Rules
	IsRemoteDtoSuccessful
	ExecRemoteGatewayRequest
	ExecRemoteGatewayCachedBusinessRule
	ExecRemoteGatewayJob
	ExecRemoteGatewayBusinessRule
	GetRemoteDataSourceConnection
	GetRemoteGatewayJobStatus
	GetSmartIntegrationConfigValue
	GetGatewayConnectionInfo
	Check OneStream Version
	BRApi.Utilities.IsGatewayOnline

	Business Rules Compatibility
	BRApi.Database.SaveCustomDataTable
	BRApi.Database.InsertOrUpdateRowBRApi.Database.DeleteRows
	SQL Bulk Copy
	SQL Transactions

	Limitations
	Business Rule Compatibility
	Parquet Format Transfer
	Returning Multiple DataTables with Remote Business Rules
	Custom Email Connections
	FTP Transfers
	Internal Certificate Trust
	SQL Table Editor
	Precision using Decimals
	Receiving Data from Smart Integration Connector
	Sending Data to Smart Integration Connector

	Troubleshooting
	Error Log
	Common Errors
	Memory Issues
	Gateway Version is Empty
	Custom Data Source Names
	Array cannot be null Error
	Opening and Saving Configuration Errors
	Incorrect or Missing Library References

	Script Error During Upgrade
	Data Returned as a String
	Manual Start and Stop
	Remote Endpoint Not Found/Could Not Decrypt
	ERPConnect Module or Dependency Not Found
	Connections Requiring a Signed Certificate
	Trusted Certificate Chain
	Unable to Connect
	Communication Error
	Host Header Communication Error

	Gateway Testing Issue Resolution
	Automatic Business Rule Decompression (Prior to Version 8.0)

	Frequently Asked Questions
	Security and Network Configuration
	Is Smart Integration Connector secure in comparison to using a VPN?
	Are there any ports or IPs that need to be whitelisted in our firewall to set...
	Is IP Whitelisting supported?

	Configuration and Connectivity
	Is there an easy way to see if my connection is online?
	Can I connect the Smart Integration Connector Gateway Service to both DEV and...
	Can I connect to multiple SFTP servers?

	Data Handling and Query Behavior
	Are there data limitations we need to be concerned about?
	What if I have a query that returns null values?
	Are there any restrictions on the time queries are allowed to run?

	Integration and API Usage
	Can anything other than JSON format be returned when using a WebAPI?
	Why would we use BR API verses Remote Code Execution of Business Rules?
	What are some of the use cases for when we use the three Remote Code Executio...
	Are there any specific Business Rule functions that are not compatible with S...

	Maintenance and Reliability
	How do I adjust the reporting interval for Smart Integration Connector failur...
	Will OneStream upgrades stop the connections from running?

	Host Headers
	Cannot Communicate using a Direct Connection.
	Is the Host Header required for all integrations?
	What value should I use for the Host Header?

	Migration from VPN
	I am migrating from a VPN solution to Smart Integration Connector. is there a...

	Troubleshooting

