
API Overview Guide

9.1.0 Release



Copyright © 2025 OneStream Software LLC. All rights reserved.

All trademarks, logos, and brand names used on this website are the property of their respective

owners. This document and its contents are the exclusive property of OneStream Software LLC

and are protected under international intellectual property laws. Any reproduction, modification,

distribution or public display of this documentation, in whole or part, without written prior consent

from OneStream Software LLC is strictly prohibited.



Table of Contents

Introduction 1

Development Technologies 2

Programming Language 2

User Interface Technology 2

Server Technology 3

Database Technology 3

Developer Fundamentals 4

VB.Net and C# 4

In-Solution Documentation 4

Business Rules Editor Overview 5

Helpful Resources 6

Platform Engines 8

Workflow Engine 8

Stage Engine 8

API Overview Guide i

Table of Contents



Finance Engine 9

Data Quality Engine 9

Data Management Engine 10

Presentation Engine 10

BRApi 11

API Structure and Organization 12

Namespaces 12

Namespaces Defined 13

Namespace Hierarchy 13

Microsoft Financial Calls 16

In-Solution Development 17

Custom Development 18

Using System Tools 19

System Business Rules 19

Database 21

Tables 21

API Overview Guide ii

Table of Contents



Tools 21

Data Records 21

Event Listing 22

Event Handler Business Rules 22

Event Firing Sequences 26

Finance Functions APIs 63

Member ID 64

Api.Pov.Time.MemberId 64

Api.Pov.Time.MemberId Usage 66

Api.Pov.Entity.MemberId 67

Api.Pov.Entity.MemberId Usage 69

Api.Pov.Account.MemberId 69

Api.Pov.Account.MemberId Usage 70

Dimension Primary Key - DimPk 72

DimPK Usage 72

API Overview Guide iii

Table of Contents



Dimension Type Id 74

DimTypeID Usage 75

Data Unit Dimension POV 76

Data Unit Dimension POV Usage 76

Time Functions 78

Api.Time.GetYearFromId 78

Api.Time.GetPeriodNumFromId 79

Api.Time.GetPeriodNumFromId Usage 79

Api.Time.GetNumDaysInTimePeriod 80

Api.Time.GetNumDaysInTimePeriod Usage 80

Api.Time.AddTimePeriods 81

Api.Time.AddTimePeriods Usage 81

Api.Time.AddYears 82

Api.Time.AddYears Usage 82

Using Member Functions for Calculations 84

GetMember 84

API Overview Guide iv

Table of Contents



GetMember Usage 84

GetMemberId 85

GetMemberID Usage 85

GetBaseMembers 86

GetBaseMembers Usage 86

Writing Stored Calculations 88

Overload Function 89

Api.Data.Calculate Usage 90

IsDurableCalculatedData 90

IsCurableCalculatedData Usage 90

Eval Function 91

Eval Function Usage 91

Summary 93

Remove Functions 94

RemoveZeros 94

RemoveNoData 95

API Overview Guide v

Table of Contents



Remove Functions Usage 96

GetDataBuffer Functions 98

GetDataBuffer Function 99

GetDataBuffer Usage 100

Unbalanced Math Functions 102

Unbalanced Math Functions 102

Unbalanced Math Functions Usage 103

GetDataBufferUsingFormula Function 103

FilterMembers 104

GetDataBufferUsingFormula Usage 104

API Overview Guide vi

Table of Contents



Introduction
The purpose of the API Guide is to provide detailed information about the technologies and

application programming interfaces available to consultants and developers interested in

extending the functionality of OneStream. 

This document contains information about the technologies used in the OneStream product,

naming conventions and organizational approaches used by the OneStream engineering team.  It

also includes detailed reference listings for API methods and events exposed by OneStream.

To maintain optimal performance and ensure security, use public and documented APIs only.

Internal APIs are not intended for public general use and may be changed or removed without

notice. Support cannot provide assistance for issues resulting from the uses of nonpublic

features.

For customers in a OneStream-hosted environment, see the Identity and Access Management

Guide for information about authentication with OneStream IdentityServer and using personal

access tokens (PATs).

API Overview Guide 1

Introduction



Development Technologies

Programming Language
The OneStream platform is based on .Net Core. OneStream’s underlying codebase is

predominately made up of C# libraries with a few VB.Net libraries in use as well. C# and Visual

Basic .NET are the two primary programming languages used to code against .NET Core. C# and

VB.NET have very different syntax elements, but Microsoft developed these languages

simultaneously as part of a common .NET Core development platform. Both C# and VB.Net are

developed, managed, and supported by the same language development team at Microsoft. They

compile to the same intermediate language (IL) which runs against the same .NET Core runtime

libraries. Although programming syntax is different for each language, almost every command in

VB has an equivalent command in C# and vice versa. Both languages reference the same

underlying .NET Core Base Classes to extend their functionality.

User Interface Technology
The OneStream user interface is based on the Windows Presentation Foundation (WPF) in order

to provide a truly rich end user experience. WPF employs XAML, an XML based language, to

define and link various interface elements. WPF applications can be deployed as standalone

desktop programs, or hosted as an embedded object in a website. Windows 10 Store application

development provides another opportunity for WPF based applications to be deployed, but as

Windows only applications.

API Overview Guide 2

Development Technologies



Server Technology
All OneStream code is hosted and executed with Microsoft Internet Information Services (IIS).

This means that both the Web Server (service code) and Application Server (service code) are

executed within an IIS Application Pool process host.  The code is running on the application

server tier hosted within the application sever IIS application pool.  This is a very important

concept to keep in mind because there will be times when a Business Rule must interact with

different elements of the system.  The context in which the Business Rule is running needs to be

understood in order to establish communication and/or interact with those other system elements.

Database Technology
OneStream was designed to run on all versions of the Microsoft SQL Server relational database

engine (Express, Standard, Data Center, Enterprise and Azure Database as a Service).  For

larger organizations, the SQL Server Enterprise edition is recommended because OneStream

makes use of table partitioning.  This enables maximum throughput during heavily multi-threaded

operations such as data transformation and consolidation.  The OneStream engineering team is

committed to fully utilizing the capabilities of the most recent versions of SQL Server and to

keeping the OneStream platform optimized for new versions of SQL Server as they become

available.

API Overview Guide 3

Development Technologies



Developer Fundamentals

VB.Net and C#
The OneStream platform is based entirely on .Net Core as is the Business Rules engine.

Therefore, VB.Net and C# are the logical choice for Business Rule syntax. At execution time, all

Business Rules are compiled on demand and cached for fast and reliable execution. Writing a

Business Rule in VB.Net or C# provides the end user with many advantages over older products

based on VBScript. Business Rule writers can expect exceptional code performance, better error

messaging, and better error handling because VB.Net and C# are a full featured programming

language. In the end, these capabilities result in a more reliable Business Rule code.

NOTE: There are two broad Business Rule Classifications: Shared Business Rules and
Item Specific Business Rules. Shared Business Rules can be written in either VB.NET

or C#, Item Specific Business Rules can be written in VB.NET only.

In-Solution Documentation
The Business Rule Editor includes context sensitive help for API properties and methods as well

as Snippets (code examples). In-solution documentation makes the process of writing a Business

Rule more efficient because both API Documentation, Objects, and Samples are presented within

the Business Rule Editor window.  In addition, useful coding examples accumulated by the

OneStream engineering and consulting teams are also presented in context sensitive manner

within the Business Rule editor.  Companies and partners can author their own Snippets and

include them in their application as an extension of the OneStream predefined Snippets (Snippet

Editor OneStream Solution required). 

API Overview Guide 4

Developer Fundamentals



Business Rules Editor Overview
The Business Rule editor is a powerful in-solution screen that provides integrated API context

help, syntax editing with intelli-sense, and full outlining capabilities.  The actual syntax content

and Business Rule structure will be discussed at length in subsequent sections of this document.

The image below explains the major regions and elements of the Business Rule editor. 

API Overview Guide 5

Developer Fundamentals



Helpful Resources

VB.Net

VB.Net is one of the most popular programming languages in use today.  This language is

especially popular amongst business users because the syntax is perceived to be more readable

and business user friendly than other programming languages.  VB.Net still shares many of the

same syntax elements of older VB dialects such as VB6, VBA and VBScript.  This means that

users who have written Macros in Microsoft Excel or used VBScript to write Business Rules in first

generation CPM solutions should feel comfortable with the core syntax elements of VB.Net.  The

main learning challenge business users face when migrating to VB.Net is understanding the

object oriented nature of the language.  In comparison to VBScript, VB.Net offers more elegant

coding opportunities. Many of the statements and processes are manually created in VBScript,

but in VB.Net they are encapsulated in object libraries on which users can simply call. 

Microsoft VB.Net Learning

Getting comfortable with VB.Net takes a little awareness of the basic libraries and objects

provided by .Net Core.  The link below points to some resources that business users may find

helpful during the VB.Net learning process.

Microsoft Visual Basic

https://msdn.microsoft.com/en-us/library/2x7h1hfk.aspx

API Overview Guide 6

Developer Fundamentals

https://msdn.microsoft.com/en-us/library/2x7h1hfk.aspx


C#

C# (pronounced "See Sharp") is a modern, object-oriented, and type-safe programming

language. This language is especially popular amongst developers as it enabled them to build

many types of secure and robust applications that run in .NET. C# has its roots in the C family of

languages and will be immediately familiar to C, C++, Java, and JavaScript programmers.

Microsoft C# Learning

The link below points to some resources that business users may find helpful during the C#

learning process.

https://docs.microsoft.com/en-us/dotnet/csharp/

API Overview Guide 7

Developer Fundamentals



Platform Engines
The platform is comprised of multiple processing engines.  These engines have distinct

responsibilities with respect to system processing and consequently they expose different API

interfaces to the Business Rules they call.  This section provides a brief overview of each engine

in the platform and describes the engine’s core responsibilities.

Workflow Engine
TheWorkflow Engine is thought of as the controlling engine or the puppeteer.  The main

responsibility of this engine is to control and track the status of the business processes defined in

the Workflow hierarchies.  This engine is primarily accessed through the BRApi and can be called

from other engines in order to check Workflow status during process execution.  The Workflow

Engine provides a very rich event model allowing eachWorkflow process to be evaluated and

reinforced with customer specific business logic if required (see Appendix 2: Event Listing).

Stage Engine
The Stage Engine performs the task of sourcing and transforming external data into valid analytic

data points.  The main responsibility of this engine is to read source data (files or systems) and

parse the information into a tabular format.  This allows the data to be transformed or mapped to

valid Members defined by the Finance Engine.  The Stage Engine is an in-memory, multi-

threaded engine that provides the opportunity to interact with source data as it is being parsed

and transformed.  In addition to parsing and transforming data, the Stage Engine also has a

sophisticated calculation that enables data to be derived and evaluated based on incoming

source data.  The Stage Engine provides quality services to source data by validating, mapping,

and executing Derivative Check Rules.

API Overview Guide 8

Platform Engines



Finance Engine
The Finance Engine is an in-memory financial analytic engine.  The main responsibility of this

engine is to enrich and aggregate base data cells into consolidated multi-Dimensional

information.  The Finance Engine provides the opportunity to define sophisticated financial

calculations through centralized Business Rules as well as member specific Business Rules

(Member Formulas). It works concurrently with the Stage Engine to validate incoming

intersections and works with the Data Quality Engine to execute Confirmation Rules which are

used to validate analytic data values.

Data Quality Engine
The Data Quality Engine is responsible for controlling data confirmation and certification

processes.  This Confirmation Engine is used to define and control the sequence of data value

checks required to assert the information submitted from a source system is correct.  The

Certification Engine is responsible for managing user certifications and determining the Workflow

dependents’ completion status.  This engine is primarily accessed through the BRApi and may be

called from other engines in order to check data quality status during process execution.

API Overview Guide 9

Platform Engines



Data Management Engine
The Data Management Engine provides task automation services to the platform.  This engine

executes batches of commands that are organized into sequences which contain steps.  Steps

represent entry points or mechanisms to execute features of other engines.  For example, the

Clear Data Step uses the services of the Finance Engine.  In addition, the Data Management

Engine has the ability to execute a Business Rule Step which executes a custom Business Rule

as part of a Data Management Sequence.  This is an incredibly powerful capability because it

provides the ability to string together any combination of predefined processing steps with custom

Business Rule steps.

Presentation Engine
The Presentation Engine provides extensive data visualization services to platform.  The

Presentation Engine is made up of the following component engines: Cube View Engine,

Dashboard Engine, Parameter Engine, Book Engine and Extensible Document Engine.  The

Presentation Engine is responsible for managing and delivering content to the end user as well as

providing a development environment for custom user interface elements.  This engine enables

OneStream Solution application development capabilities and continues to evolve with each

product release.  Like the Data Management Engine, the Presentation Engine interacts with and

can call the services of all other engines in the product.

API Overview Guide 10

Platform Engines



BRApi
The BRApi is common across all Business Rules, engines and APIs being run, so it is not an

engine itself. A BRApi function runs outside of the other engines and can orchestrate certain

functions from within other engines. In other words, a BRApi function be run from one engine (for

example, Parser) to tell other engines (for example, Finance) to run their own APIs (for example,

API.Data.GetDataCellUsingMemberScript). For another example, while the

API.Data.GetDataCell function is available from within the Finance engine, a similar BRApi called

GetDataCellUsingMemberScript can be run from any engine if given the appropriate arguments.

A common use is BRApi.ErrorLog.LogMessage from any engine.

API Overview Guide 11

Platform Engines



API Structure and Organization

Namespaces
.Net Core organizes code libraries into subject areas called Namespaces. The process begins

with identifying the Namespaces (libraries) required for the procedure being created.

Namespaces provide distinction to the objects and methods that exist in a code library. As a best

practice, Namespaces typically start with the name of the company that created the code library.

This prevents naming conflicts for objects that share a common name, but were created by

different software providers.

In an effort to keep coding syntax as terse as possible, .Net Core allows the user to specify

common Namespaces to use at the top of a Business Rule. These lines are preceded by the key

word Imports. Adding Imports Statements prevents having to type an object’s fully qualified name

within a Namespace.

All Business Rules are prepopulated with both the commonly used Microsoft Namespaces as well

as the OneStream specific Namespaces. For example, adding the statement Imports

System.Math to a Business Rule enables access to objects in the System.Math Namespace. 

Instead of typing System.Math.Round(100.05,0), type Round(100.05,0).

The example below shows the Namespace references used in a standard Extensibility Rule.

API Overview Guide 12

API Structure and Organization



Namespaces Defined

OneStream is a large and sophisticated software platform and consequently a great deal of effort

went into organizing the code base into a hierarchical set of Namespaces. This section defines

the Namespace hierarchy and explains the primary purpose of the code libraries in each

Namespace. It is important to understand structure and meaning of the platform Namespaces

because most API methods accept and return objects defined within specific Namespaces. By

understanding the structure of the Namespace hierarchy, developers can browse for objects

using intelli-sense in the syntax editor. 

Namespace Hierarchy

The hierarchy below denotes the platform Namespaces and the object libraries contained within

them. This hierarchy is explored from within the Business Rule syntax editor by typing

OneStream. and navigating through the intelli-sense popup lists. This technique helps find objects

to pass into an API function, objects returned from an API function, or common helper classes

available in the platform.

OneStream (Root Namespace)

OneStream.BusinessRule

OneStream.BusinessRule.Finance

API Overview Guide 13

API Structure and Organization



OneStream.BusinessRule.Parser

OneStream.BusinessRule.Connector

OneStream.BusinessRule.ConditionalRule

OneStream.BusinessRule.DerivativeRule

OneStream.BusinessRule.DashboardDataSet

OneStream.BusinessRule.DashboardExtender

OneStream.BusinessRule.DashboardStringFunction

OneStream.BusinessRule.Extender

OneStream.Client

OneStream.Client.SharedUI

OneStream.Client.SharedUI.FinanceMsgStrings

OneStream.Client.SharedUI.FinanceUIStrings

OneStream.Client.SharedUI.GeneralMsgStrings

OneStream.Client.SharedUI.GeneralUIStrings

OneStream.Client.SharedUI.StageMsgStrings

OneStream.Client.SharedUI.StageUIStrings

OneStream.Client.SharedUI.StringResourceFileType

OneStream.Client.SharedUI.StringResourceHelper

OneStream.Client.SharedUI.XFStrings

OneStream.Finance

OneStream.Finance.Engine

OneStream.Finance.Engine.DataApi

OneStream.Finance.Engine.EvalDataBufferDelegate

OneStream.Finance.Engine.FinanceRulesApi

OneStream.Finance.Engine.IAccountApi

OneStream.Finance.Engine.ICalcStatusApi

OneStream.Finance.Engine.IConsApi

OneStream.Finance.Engine.ICubesApi

OneStream.Finance.Engine.IDimensionsApi

API Overview Guide 14

API Structure and Organization



OneStream.Finance.Engine.IEntityApi

OneStream.Finance.Engine.IFlowApi

OneStream.Finance.Engine.IFunctionsApi

OneStream.Finance.Engine.IFxRatesApi

OneStream.Finance.Engine.IMembersApi

OneStream.Finance.Engine.IPovApi

OneStream.Finance.Engine.IScenarioApi

OneStream.Finance.Engine.ITimeApi

OneStream.Finance.Engine.IUDApi

OneStream.Finance.Engine.IViewApi

OneStream.Finance.Engine.IWorkflowApi

OneStream.Stage

OneStream.Stage.Engine

OneStream.Stage.Engine.Parser

OneStream.Stage.Engine.ParserDimension

OneStream.Stage.Engine.TransformerDataCache

OneStream.Stage.Engine.Transformer

OneStream.Stage.Engine.TransformerDimension

OneStream.Stage.Engine.TransformRuleCache

OneStream.Shared

OneStream.Shared.Engine

OneStream.Shared.Engine.ExternalWcfClient

OneStream.Shared.Engine.TaskActivityStepWrapperItem

OneStream.Shared.Database

OneStream.Shared.Database.DbConnInfo

OneStream.Shared.Common

OneStream.Shared.Common.(Various Constants, Helper Classes & Data Transfer Objects ‘DTO’ )

OneStream.Shared.Wcf

OneStream.Shared.Wcf.(Various Constants & Data Transfer Objects ‘DTO’)

API Overview Guide 15

API Structure and Organization



Microsoft Financial Calls

Financial calls are part of the Microsoft.VisualBasic namespace, and can be used to for

calculations such as:

l Depreciation

l Present and future values

l Interest rates

l Rates of return

l Payments

These functions are available to anyone with access to Business Rules. They can be explored

within the Business Rule syntax editor by typing Microsoft.VisualBasic.Financial then navigating

through the intelli-sense popup lists.

To view all methods from the Microsoft.Visual Basic Financial class used in a Business Rule:

1. Navigate to the Business Rule Editor:

a. In the OneStream Software application, click the Application tab.

b. Under Tools, click Business Rules.

c. Expand the appropriate Business Rules category or click Search on the toolbar.

2. Click the Formula tab.

3. In the editor window, typeMicrosoft.Visualbasic.Financial.

A list of methods displays.

API Overview Guide 16

API Structure and Organization



In-Solution Development

In-solution development is the process of creating OneStream Business Rules to deliver domain

specific solutions.  This means that all Business Rules are executed within the application server

process space.  The code written is only executed on the application servers where OneStream is

deployed. 

Developing within the application server environment enables solution developers to focus on the

business problem instead of common programming concerns.  The platform takes care of

managing connections, moving data between application tiers, and load balancing server

activities.

API Overview Guide 17

API Structure and Organization



In some cases, in-solution development is seen as a limitation because the developer is restricted

to coding within the application server tier.  However, in most cases the efficiency and quality

gained by developing within the platform out ways any limitations imposed by coding at the

application server tier.

Custom Development

Custom development refers to stand alone application development that interacts with the

platform at the web server tier. 

Custom Web Development

The platform has the ability to display web pages within a custom Dashboard.  This allows

completely custom web applications to surface within the OneStream Solution . OneStream can

pass information about the user’s POV andWorkflow as URL Parameters enabling the custom

web application to act as part of an integrated solution.

With this capability, developers are free to create and incorporate any solution they can imagine.

API Overview Guide 18

API Structure and Organization



Using System Tools

System Business Rules
System Extender Business Rules are used in coordination with Azure Server Sets for elastic

scalability at the Azure Database and Server Sets level. Server and eDTU scaling can be

accomplished manually or via System Business Rules.  If System Business Rules is selected as a

Scaling Type, then OneStream will call a user-defined System Extender Business Rule to

determine if scaling is needed.  The user is responsible for implementing the scaling function and

returning the proper scaling object to OneStream. This can be accomplished by adding a System

Extender Business Rule and assigning it appropriately.

Under each Case statement, these rules and related Args and BRApis can be used to check the

current Server Set capacity, query metrics about a Server Set or Azure Database and impact the

volume of Server Sets or level of Azure Database deployed.

Refer to the Installation and Configuration Guide under Azure Database Connection Settings and

Server Sets for where to refer to these Business Rules. Example starting point of empty System

Extender Business Rule upon creation:

API Overview Guide 19

Using System Tools



Sample System Business Rule
Metrics data is passed to this function to help the user determine whether the server or database

needs to be scaled or not.  Depending on what is being scaled, different metric data is passed in. 

For server scaling, Environment metrics and Scale Set metrics are passed in to help determine

scaling.  For database scaling, Environment metrics and SQL Server Elastic Pool metrics are

passed in to help determine scaling.

API Overview Guide 20

Using System Tools



Database
The Database screen allows System Administrators to view all of OneStream’s database tables

and provides tools for managing stored data and other information.

Tables

This gives read-only access to all data tables in the database and can be used for tasks such as

trying to debug issues without having access to the database, or deletion logging.

Tools

Database Tools allow System Administrators to manage the database.

Data Records

Enter a Member Filter in order to view data for the entire system.

API Overview Guide 21

Using System Tools



Event Listing

Event Handler Business Rules
WCF Event Handler

This allows direct interaction with the Microsoft Windows Communication Foundation which

means it listens to communication between the client and the web server. The rule will intercept

the communication, analyze it, and if certain criteria is met, it will run its logic.  This is quite flexible

and has a variety of uses such as creating, reading, deleting, and updating different types of

objects in the system for users in a group or Transformation Rule changes. For example, a rule

can be created to e-mail an auditor about every metadata change as it happens.

Transformation Event Handler
This can be run at various points from Import through Load. Available operations:

StartParseAndTransForm

InitializeTransFormer

ParseSourceData

LoadDataCacheFromDB

ProcessDerivativeRules

ProcessTransformationRules

DeleteData

DeleteRuleHistory

WriteTransFormedData

API Overview Guide 22

Event Listing



SummarizeTransFormedData

CreateRuleHistory

EndParseAndTransForm

FinalizeParseAndTransForm

StartRetransForm

EndRetransForm

FinalizeRetransForm

StartClearData

EndClearData

FinalizeClearData

StartValidateTransForm

ValidateDimension

EndValidateTransForm

FinalizeValidateTransForm

StartValidateIntersect

EndValidateIntersect

FinalizeValidateIntersect

LoadIntersect

StartLoadIntersect

EndLoadIntersect

API Overview Guide 23

Event Listing



FinalizeLoadIntersect

Journals Event Handler
This can be run before, during, or after a Journal operation such as Submission, Approval, or

Post. Available operations:

SubmitJournal

ApproveJournal

RejectJournal

PostJournal

UnpostJournal

StartUpdateJournalWorkflow

EndUpdateJournalWorkflow

FinalizeUpdateJournalWorkflow

Save Data Event Handler
This is run in order to track all save events in an application.

Forms Event Handler
This can be run before, during, or after an operation such as Form Save. Available operations:

SaveForm

CompleteForm

RevertForm

StartUpdateFormWorkflow

EndUpdateFormWorkflow

FinalizeUpdateFormWorkflow

API Overview Guide 24

Event Listing



Data Quality Event Handler
This can be run before, during, or after data quality events like Confirmation and Certification.

Available operations:

StartProcessCube

Calculate

Translate

Consolidate

EndProcessCube

FinalizeProcessCube

PrepareICMatch

StartICMatch

PrepareICMatchData

EndICMatch

StartConfirm

EndConfirm

FinalizeConfirm

SaveQuestionResponse

StartSetQuestionairreState

SaveQuestionairreState

EndSetQuestionairreState

StartSetCertifyState

API Overview Guide 25

Event Listing



SaveCertifyState

EndSetCertifyState

FinalizeSetCertifyState

Data Management Event Handler
This can be run before or after a Data Management Sequence or Step runs. Available operations:

StartSequence

ExecuteStep

EndSequence

Workflow Event Handler
This can be run before or after a Workflow execution step. Available operations:

UpdateWorkflowStatus

WorkflowLock

WorkflowUnlock

Event Firing Sequences

OneStream fires a series of events when completing tasks via Event Handler Business Rules. 

The example below explains how to read the table which provides the firing sequence when

running a specific task.

API Overview Guide 26

Event Listing



Clear Cube Data

API Overview Guide 27

Event Listing



API Overview Guide 28

Event Listing



Clear Stage Data

API Overview Guide 29

Event Listing



API Overview Guide 30

Event Listing



Execute Data Management

API Overview Guide 31

Event Listing



Import Data Connection

API Overview Guide 32

Event Listing



API Overview Guide 33

Event Listing



Import Excel File

API Overview Guide 34

Event Listing



API Overview Guide 35

Event Listing



API Overview Guide 36

Event Listing



API Overview Guide 37

Event Listing



API Overview Guide 38

Event Listing



API Overview Guide 39

Event Listing



Import Text File

API Overview Guide 40

Event Listing



API Overview Guide 41

Event Listing



API Overview Guide 42

Event Listing



API Overview Guide 43

Event Listing



Process Form

API Overview Guide 44

Event Listing



API Overview Guide 45

Event Listing



Process Journal

API Overview Guide 46

Event Listing



API Overview Guide 47

Event Listing



API Overview Guide 48

Event Listing



Process Workflow

API Overview Guide 49

Event Listing



API Overview Guide 50

Event Listing



API Overview Guide 51

Event Listing



API Overview Guide 52

Event Listing



API Overview Guide 53

Event Listing



API Overview Guide 54

Event Listing



API Overview Guide 55

Event Listing



API Overview Guide 56

Event Listing



API Overview Guide 57

Event Listing



API Overview Guide 58

Event Listing



API Overview Guide 59

Event Listing



API Overview Guide 60

Event Listing



API Overview Guide 61

Event Listing



API Overview Guide 62

Event Listing



Finance Functions APIs

API Overview Guide 63

Finance Functions APIs



Member ID
There are many functions that use MemberID as an integer to pass in as a property. These

functions get the current POV of the specific Dimension member to perform a variety of tasks,

such as:

l Get Current Year based on Time POV

o Example: Api.Time.GetYearFromId(api.Pov.Time.MemberId)

l Get Text field value from Entity POV

o Example: Api.Entity.Text(api.Pov.Entity.MemberId, 1)

l Get Account Type based on current Account POV

o Example: Api.Account.GetAccountType(api.Pov.Account.MemberId)

When working with formulas and calculations, it is better to work with MemberId versus Member

Name.

Api.Pov.Time.MemberId
Api.Pov.Time.MemberId is obtained from the Time Member Id for the current POV being executed

during the calculation. The Time.MemberId is stored as an unique integer to represent a single

Time member. The uniqueness is determined by the combination of the Year and Period.

API Overview Guide 64

Member ID



H1 = 001                    

Q1 = 002

M1 = 003            

M2 = 004

M3 = 005

Q2 = 006

M4 = 007

M5 = 008

M6 = 009

API Overview Guide 65

Member ID



H2 = 010

Q3 = 011

M7 = 012

M8 = 013

M9 = 014

Q4 = 015

M10 = 016

M11 = 017

M12 = 018

The Time MemberId is constructed like this:  2019003000

The api.Pov.Time.MemberId is used as a property in many functions. Here are some of the most

common functions:

l api.Time.GetYearFromId

l api.Time.GetPeriodNumFromId

l api.Time.GetNumDaysInTimePeriod

l api.Time.AddTimePeriods

l api.Time.AddYears

Api.Pov.Time.MemberId Usage

Example using api.Pov.Time.MemberId:

API Overview Guide 66

Member ID



ErrorLog result:

Example using api.Pov.Time.MemberId in a working formula:

Api.Pov.Entity.MemberId
Api.Pov.Entity.MemberId is obtained from the Entity Member Id for the current Entity POV being

executed during the calculation. The Entity.MemberId is stored as a unique integer to represent a

single Entity member. The Entity Member Id is also found using the Grid View in the Entity

Dimension Library.

API Overview Guide 67

Member ID



Api.Pov.Entity.MemberId is used as a property in many functions.  Here are some of the most

common functions:

l Get Local Currency Id for current Entity POV.

o Example: api.Entity.GetLocalCurrencyId(api.Pov.Entity.MemberId)

l Get Local Currency Cons Member Name for current Entity POV.

o Example:

api.Entity.GetLocalCurrencyConsMember(api.Pov.Entity.MemberId).Name

l Get value in Text Field for Dimension Members prior to executing formula calculation.

o Example: api.Entity.Text(api.Pov.Entity.MemberId, 1)

l Get Percent Consolidation for Parent Child Relationship and specific to user

localization. Can also determine by Scenario Type and Time.

o Example: api.Entity.PercentConsolidation(api.Pov.Entity.MemberId,

api.Pov.Parent.MemberId, api.Pov.ScenarioTypeId,

api.Pov.Time.MemberId).XFToStringForFormula

l Get Percent Ownership for Parent Child Relationship and specific to user localization. Can

also determine by Scenario Type and Time.

API Overview Guide 68

Member ID



o Example: api.Entity.PercentOwnership(api.Pov.Entity.MemberId,

api.Pov.Parent.MemberId, api.Pov.ScenarioTypeId,

api.Pov.Time.MemberId).XFToStringForFormula

Api.Pov.Entity.MemberId Usage

Example using api.Pov.Entity.MemberId:

ErrorLog Result:

Example using api.Pov.Entity.MemberId in a working formula:

Api.Pov.Account.MemberId
Api.Pov.Account.MemberId is obtained from the Account Member Id for the current Account POV

being executed during the calculation. The Account.MemberId is stored as a unique integer to

represent a single Account member. The Account Member Id is also found using the Grid View in

the Account Dimension Library.

API Overview Guide 69

Member ID



Api.Pov.Account.MemberId is used as a property in many functions. Here are some of the most

common functions:

l Get Account Type based on current Account POV

o Example: api.Account.GetAccountType(api.Pov.Account.MemberId)

l Get value in Text Field for Dimension Members prior to executing formula calculation

o Example: api.Account.Text(api.Pov.Account.MemberId, 1)

Api.Pov.Account.MemberId Usage

Example using api.Pov.Account.MemberId :

ErrorLog Result:

Example using api.Pov.Account.MemberId in a working formula:

API Overview Guide 70

Member ID



API Overview Guide 71

Member ID



Dimension Primary Key - DimPk
DimPk is known as Dimension Primary Key. This is a unique primary key that is assigned to

Dimensions when they are created. It is a combination of the DimTypeId and the DimId.

DimPk is commonly used to identify which Dimension should be used when checking for

members as base members or descendants in a specific Dimension. DimPk is commonly used in

the following functions:

l Get Dimension Primary Key of a Specific Dimension

o Example: api.Dimensions.GetDim("UD1DimName").DimPk

l Check if it is a Base Member of a Specific Ancestor

o Example: api.Members.IsBase(dimPk, ancestorMemberId, baseMemberId,

dimDisplayOptions)

l Get Base Members of Parent from GetMember

o Example: api.Members.GetBaseMembers(api.Pov.UD1Dim.DimPk,

parent.MemberId, Nothing)

DimPK Usage
Example using DimPK :

ErrorLog Result:

API Overview Guide 72

Dimension Primary Key - DimPk



Example using api.Pov.UD1Dim.DimPk in a working formula:

API Overview Guide 73

Dimension Primary Key - DimPk



Dimension Type Id
Dimension Type Id is a property of DimPk. The Dimension Type Id is a unique integer Id that is

assigned to a Dimension. The DimTypeId is found in the Dim table and the DimTypeId represents

each Dimension.

l Entity = 0

l Scenario = 2

l Account = 5

l Flow = 6

l UD1 = 9

l UD2 = 10

l UD3 = 11

l UD4 = 12

l UD5 = 13

l UD6 = 14

l UD7 = 15

l UD8 = 16

The DimTypeId is used in various functions. DimTypeId is most commonly used with the

GetMember or GetMemberId functions where the first property in the function is DimTypeId. In

this case, GetMember and GetMemberId needs to know which Dimension Id to use for the

member the function is looking for.

API Overview Guide 74

Dimension Type Id



l Get a specific Member in a specific Dimension

o Example: api.Members.GetMember(DimType.Account.Id, "AcctMemberName")

l Get Member Id for a specific Member in a specific Dimension

o Example: api.Members.GetMemberId(DimType.Account.Id, "AcctMemberName")

DimTypeID Usage
Example using DimTypeId :

ErrorLog Result:

Example using DimType.Account.Id in a working formula:

API Overview Guide 75

Dimension Type Id



Data Unit Dimension POV
Stored calculations run based on the Data Unit POV. The Data Unit Dimension consists of Cube,

Entity, Parent, Consolidation, Time, and Scenario. 

Because stored calculations run off Data Unit Dimensions, these Dimensions are used as part of

If Statements to execute calculations on conditions. The Data Unit Dimensions should not be

used as destination data buffers, and should not be used on the left hand side of the equation in a

api.Data.Calculate formula.

Account related Dimensions such as Account, Flow, and UD’s are not available at run-time of the

calculations. Therefore, they cannot be used in the If Statements for stored calculations.

However, they are available for Dynamic Calculations. 

Run for POV and Check Member Names for Data Unit Dimensions Before Executing Calculation:

l If api.Pov.Cube.Name.XFEqualsIgnoreCase("CubeName") Then

l If api.Pov.Entity.Name.XFEqualsIgnoreCase("EntityName") Then

l If api.Pov.Scenario.Name.XFEqualsIgnoreCase("ScenarioName") Then

l If api.Pov.Cons.Name.XFEqualsIgnoreCase("USD") Then

Data Unit Dimension POV Usage
Example using api.Pov.Entity.Name :

ErrorLog Result:

API Overview Guide 76

Data Unit Dimension POV



Example using api.Pov.Entity.Name in a working formula:

API Overview Guide 77

Data Unit Dimension POV



Time Functions
The following APIs are some of the most common time functions:

l api.Time.GetYearFromId

l api.Time.GetPeriodNumFromId

l api.Time.GetNumDaysInTimePeriod

l api.Time.AddTimePeriods

l api.Time.AddYears

Api.Time.GetYearFromId
This function gets the year from the current POV Time Id. It evaluates the year and then

introduces logic to execute the formula. 

API Overview Guide 78

Time Functions



Api.Time.GetPeriodNumFromId
This function gets the period number from the current POV Time Id. The period is static and is

configured with either months or weeks followed by the period number. For example: M1 – M12 or

W1 –W54. It evaluates the period number and then introduces logic to execute the formula.

Api.Time.GetPeriodNumFromId Usage

Example using api.Time.GetPeriodNumFromId :

ErrorLog Result:

Example using api.Time.GetPeriodNumFromId in a working formula:

API Overview Guide 79

Time Functions



Api.Time.GetNumDaysInTimePeriod
This function gets the number of days from the current POV Time Id. The number of days are

already programmed depending on the month that is selected. It evaluates the number of days for

a period and then introduces logic to execute the formula. 

Api.Time.GetNumDaysInTimePeriod Usage

Example using api.Time.GetNumDaysInTimePeriod:

ErrorLog Result:

Example using api.Time.GetNumDaysInTimePeriod in a working formula:

API Overview Guide 80

Time Functions



Api.Time.AddTimePeriods
This function adds time periods to the current POV Time Id. It passes that data to different

functions like GetPeriodNumFromId and then introduces logic to execute the formula.

Api.Time.AddTimePeriods Usage

Example using api.Time.AddTimePeriods:

ErrorLog Result:

API Overview Guide 81

Time Functions



Example using api.Time.AddTimePeriods in a working formula:

Api.Time.AddYears
This function adds years to the current POV Time Id. It passes that data to different functions like

GetYearFromId or GetPeriodNumFromId and then introduces logic to execute the formula. 

Api.Time.AddYears Usage

Example using api.Time.AddYears:

ErrorLog Result:

Example using api.Time.AddYears in a working formula:

API Overview Guide 82

Time Functions



API Overview Guide 83

Time Functions



Using Member Functions for
Calculations
Calculation Member functions are commonly used through the Finance Api’s for accessing

general information for any specified Member within a dimension. The Member functions allow a

rule writer to identify members, get member information, and identify base and parent members to

execute within Member Formulas and Business Rules.

The following are some of the most common Member functions for calculations:

l GetMember

l GetMemberID

l GetBaseMembers

GetMember
This function gets a specific dimension member. It is used for different functions like

api.Data.FormulaVariables, GetBaseMembers function, custommember lists, and when working

with Member Id within data buffers for processes like custom consolidation.

GetMember Usage

Example using GetMember:

API Overview Guide 84

Using Member Functions for Calculations



ErrorLog Result:

Example using GetMember in a working formula:

GetMemberId
This function gets a specific dimension member Id. This technique is commonly used when

working with source Data Buffers where the cells for a specific member Id need to be changed.

GetMemberID Usage

Example using GetMemberId:

ErrorLog Result:

Example using GetMemberId in a working formula:

API Overview Guide 85

Using Member Functions for Calculations



GetBaseMembers
This function gets base members from a specific parent member. It is commonly used when

working with Member Lists as part of FinanceFunctionType.MemberList, or to get base members

to loop through specific dimensions for api.Data.GetDataCell.

GetBaseMembers Usage

Example using GetBaseMembers:

API Overview Guide 86

Using Member Functions for Calculations



ErrorLog Result:

Example using GetBaseMembers in a working formula:

API Overview Guide 87

Using Member Functions for Calculations



Writing Stored Calculations
When writing a Member Formula or a Business Rule for a Stored Calculation, the new calculated

numbers store data for that Cube, Entity, Parent, Cons, Scenario, and Time combination. For

example, a Data Unit.

Return is never seen in a Member Formula for Formula Pass. Instead of being returned, many

numbers are calculated and stored. When running a Calculation, Translation, or Consolidation, it

calls the Member Formula once for an entire Data Unit.  OneStream does not tell with which

Account, Flow, or User Defined the numbers are being saved.

Initially, this may be confusing because Member Formulas are often written in an account’s

Formula property, and administrators believe OneStream will only allow that specific Member

Formula to write to that specific account. However, putting a Member Formula in an account’s

Formula property is only for organizational purposes. When OneStream calls that formula, it is

currently calculating a Data Unit and will initialize the API engine with only the Data Unit

Dimensions.

Basic stored formulas are commonly used via the Api.Data.Calculate api function. 

Api.Data.Calculate is used in three different ways:

l Api.Data.Calculate using Formula as String, Overload Functions, Eval Function, and

IsDurableCalculatedData

l Api.Data.Calculate using Formula as String and IsDurableCalculatedData

API Overview Guide 88

Writing Stored Calculations



l Api.Data.Calculate using Formula as String and Eval Function

Overload Function
The most common function is Api.Data.Calculate, which sets the value of one or more dimension

values (left side of formula) equal to another (right side). Final arguments (optional) are added to

the formula for Overload Functions, Evals, and Durable Data. 

The Api.Data.Calculate function must abide by the data explosion rules, which means that the left

side and the right side of the formulas are balanced with the same dimension values on both

sides. If a Member is specified for a Dimension anywhere on the right side of the equation, you

must explicitly specify something for that Dimension on the left side of the equation.

This variation of the Api.Data.Calculate provides Member Filters (all optional) which can be used

to filter the results before saving them to the target or destination. This function is the most

powerful of the Api.Data.Calculate functions as it allows you to filter intersections. In addition, the

Eval function adds the ability to filter down the number of individual data cells processed by data

cell attributes such as CellAmount or CellStatus.

This function is commonly used to filter the source data buffer by base members of an Account

related dimension. For example, A#Sales may be the source data buffer but the need for all

products is not required for the calculation. Instead, A#Sales may need to be calculated by the

base members of Clubs. By using Clubs.Base for A#Sales, the A#Sales data buffer has been

reduced to only include Clubs.Base. 

API Overview Guide 89

Writing Stored Calculations



Api.Data.Calculate Usage

Example using Overload Function in a working formula:

IsDurableCalculatedData
This variation of Api.Data.Calculate lets you define whether data is durable or not. Durable data is

not cleared automatically when a Data Unit is re-calculated. It can only be cleared by calling

api.Data.ClearCalculatedData with the clearDurableCalculatedData Boolean property set to

True. As part of the standard Calculation sequence that runs during a Calculate or Consolidate,

Durable data will be ignored from processing the clear, unless the clear is specifically defined

within the Business Rule or Member Formula.

The most common reason to set the IsDurableCalculatedData to True is for seeding purposes. As

part of the first seeding, the goal may be to seed from one Scenario to another just once and

never seed it again. In this case, the seeded data should not be cleared at any point during the

Calculate or Consolidate process. This technique is commonly used in Budget or Forecast

processes where you are executing the seeding through a Dashboard. The formula may be

applied as a FinanceFunctionType.CustomCalculate or a FinanceFunctionType.Calculate in a

Business Rule.

IsCurableCalculatedData Usage

Example using IsDurableCalculatedData in a working formula:

API Overview Guide 90

Writing Stored Calculations



Eval Function
Eval has an advanced capability that lets you get at the individual Data Cells in any Data Unit

created while processing an api.Data.Calculate script. It allows Eval() to be wrapped around a

subset of the formula’s math in order to evaluate the Data Buffer that was just created by running

that math.

Prior to the 5.0 version and the introduction of the RemoveNoData function, Eval was commonly

used to evaluate individual data cells in a source data buffer to process based on cell amount or

cell status. Evaluating the number of No Data Cells for a Data Unit is an important factor for

performance and calculation efficiencies. 

Eval was initially an important function to evaluate individual data cells but it has been replaced

with newer techniques such as GetDataBuffer and GetDataBufferUsingFormula, and looping

through cells within the data buffer, as well as the Remove functions.

Eval Function Usage

Example using Eval in a working formula:

API Overview Guide 91

Writing Stored Calculations



API Overview Guide 92

Writing Stored Calculations



Summary
The Api.Data.Calculate is the easiest and simplest way to write a formula as a Member Formula

or a Business Rule. The construction of an Api.Data.Calculate formula must be balanced on each

side of the formula with the appropriate dimensions to prevent data explosion. There are three

different ways to use the Api.Data.Calculate function: Formula with Overload, Formula with

IsDurableCalculatedData, and Formula with Eval.

From a performance perspective:

1. Never use the Api.Data.Calculate in a loop when using variables.

2. Use Remove functions whenever possible especially for sparse data models with lots of

NODATA cells.

3. GetDataBuffer and GetDataBufferUsingFormula may have a better performance

impact. Try replacing Api.Data.Calculate when doing math with GetDataBuffer math. In

some cases, performance is better by using GetDataBuffer functions in place of

Api.Data.Calculate.

API Overview Guide 93

Summary



Remove Functions
Remove Functions were introduced in the 5.0 release. They replaced the reasons to use the Eval

function. The basic need of the Eval function was to evaluate the individual data cells within a

source data buffer to apply logic for processing. In many cases, OneStream did not want to

process data cells in source data buffers that had a Cell Status of NODATA or Cell Amount = 0.

With the 5.0 release, functions do that without the need for writing additional logic.

The RemoveNoData and RemoveZeros functions provide the ability to not process individual
data cells within a source data buffer. They wrap the Remove() around a subset of the formula to

prevent processing of individual data cells from within a source data buffer. Remove functions are

used in Member Formulas or Business Rules.

Remove functions are used for performance reasons. Data Units may contain a great amount of

NODATA data cells or 0 value data cells. These cells could be needlessly processed during

calculation execution if these functions are not used in a Api.Data.Calculate formula.

RemoveZeros
RemoveZeros is used to remove data cells with a cell amount of 0 from the source data buffer. In

addition, this function removes data cells with a cell status of NODATA from the source data

buffer. It is important to evaluate if the 0s are needed for the Api.Data.Calculate formula during

calculation execution.

API Overview Guide 94

Remove Functions



RemoveNoData
RemoveNoData removes data cells with a cell status of NODATA ONLY from the source data

buffer. Unlike the RemoveZeros function, this function does not remove data cells with a cell

amount of 0.

NODATA cells and 0 cells can be found using the following methods:

1. Review the Data Unit Statistics when you right-click on a cell in Cube View.

2. Review the Application Analysis Dashboard and check the Entity Data Statistics Report.

This is based on the Data Unit and Entity Data Statistics. There may be many Member Formulas

and Business Rules that are driving data creation. Therefore, all formulas would need to be

evaluated to determine whether these Remove functions are used. The higher the percentage

ratio of NODATA cells to Total Number of Stored Records, the more important it is to use these

Remove functions.

Example =  3,203 Stored Records with 2,019 of those Stored Records as NODATA cells. Nearly

65% of the Data Unit has NODATA cells to process which causes extra calculation time.

The Review functions can be found in Key Functions under Snippets.

API Overview Guide 95

Remove Functions



Remove Functions Usage
Example using RemoveZeros in a working formula:

API Overview Guide 96

Remove Functions



Example using RemoveNoData in a working formula:

API Overview Guide 97

Remove Functions



GetDataBuffer Functions
AMember Script may not be defined for the Api.Data.Calculate function because multiple Data

Cells, which seem completely unrelated to each other, are being processed and none of the

Dimension Members are constant. For those situations, use the GetDataBuffer and

SetDataBuffer functions.

GetDataBuffer and SetDataBuffer are more fundamental than using an Eval function. They allow

you to read numbers using a Member Script, process or modify each cell in the result, and then

save the changes. Common GetDataBuffer functions include:

l GetDataBuffer

l GetDataBufferForCustomShareCalculation

l GetDataBufferForCustomElimCalculation

l GetDataBufferUsingFormula

l SetDataBuffer

When using api.Data.Calculate functions, it is important to know which Member a formula is

attached to. For example, if the formula starts with Api.Data.Calculate(“A#Sales1 =…”), put the

formula in the Sales1 account Member’s Formula setting.

However, when using GetDataBuffer functions, the formula may not be writing to a specific

Member. Every Data Cell saved is possibly written to a different dimension member. In this case,

the logic can be developed in a Business Rule and could be created as a Sub routine to execute

throughout Finance Business Rules.

API Overview Guide 98

GetDataBuffer Functions



GetDataBuffer Function
GetDataBuffer retrieves a Data Unit’s values during a particular consolidation, calculation, or

translation. When using GetDataBuffer, this is equivalent to the source data buffer or to the right

side of the equation for Api.Data.Calculate. Depending on which GetDataBuffer function you are

using, three or four properties can be used. 

For the basic GetDataBuffer, three properties are used:

l ScriptMethodType As DataApiScriptMethodType

l SourceDataBufferScript As String

l ExpressionDestinationInfo As ExpressionDestinationInfo

The scriptMethodType typically uses the Calculate option for DataApiScriptMethodType.

The sourceDataBufferScript is equivalent to the right side of the equation for the

Api.Data.Calculate.

The expressionDestinationInfo is equivalent to the left side of the equation for the

Api.Data.Calculate. Frequently, this gets manipulated using the Dimension Id, passing in the

Dimension Member Id for the data buffer primary key.

The GetDataBuffer can be used in various ways, and is not limited to the following:

1. Use Data Buffers to perform Data Buffer math. In some cases, this can perform better than

an Api.Data.Calculate.

2. Use GetDataBuffer in place of Api.Data.Calculate to use in Sub routines which execute

code and instructions, are stored in memory, and are used within Functions throughout

Finance Business Rules.

API Overview Guide 99

GetDataBuffer Functions



GetDataBuffer Usage
Example using GetDataBuffer with Data Buffer Math in a working formula:

Example using GetDataBuffer and SetDataBuffer in Business Rule Using Sub Routine in a

working formula:

API Overview Guide 100

GetDataBuffer Functions



API Overview Guide 101

GetDataBuffer Functions



Unbalanced Math Functions

Unbalanced Math Functions

Unbalanced math functions are required when performing math with two Data Buffers, where the

second Data Buffer needs to specify additional dimensionality. The term Unbalanced is used

because the script for the second Data Buffer can represent a different set of Dimensions from the

other Data Buffer in the api.Data.Calculate text. These functions prevent data explosion. The four

Unbalanced Math functions are:

l AddUnbalanced

o Example: api.Data.Calculate("A#TargetAccount = AddUnbalanced

(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

l SubtractUnbalanced

o Example: api.Data.Calculate("A#TargetAccount = SubtractUnbalanced

(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

l MultiplyUnbalanced

o Example: api.Data.Calculate("A#TargetAccount =MultiplyUnbalanced

(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

l DivideUnbalanced

o Example: api.Data.Calculate("A#TargetAccount =DivideUnbalanced

(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

API Overview Guide 102

Unbalanced Math Functions



When using Unbalanced Math functions, the first two parameters represent the first and second

Data Buffers on which to perform the function. The third parameter represents the Members to

use from the second Data Buffer when performing math with every intersection in the first Data

Buffer. The math favors the intersections in the first Data Buffer without creating additional

intersections.

It is important that the dimensionality of the Target (left side of the equation) matches the

dimensionality of the first data buffer on the right side of the equation (argument 1).

Often, these functions would be used when one source data buffer is doing math with a specific

data cell intersection. This could be a rate, driver, or some data cell input.

Unbalanced Math Functions Usage

Example using MultiplyUnbalanced in a working formula:

GetDataBufferUsingFormula Function
The GetDataBufferUsingFormula function uses an entire math expression to calculate a final data

buffer. GetDataBufferUsingFormula can perform the same data buffer math as

Api.Data.Calculate, but the result is assigned to a variable, where Api.Data.Calculate actually

saves the calculated data. 

API Overview Guide 103

Unbalanced Math Functions



GetDataBufferUsingFormula calculates multiple source data buffers first. Then, the result of the

math is stored in memory using a Formula Variable. Finally, the Formula Variable is used

anywhere within the Member Formula or Business Rule. This function is commonly used during

rule writing for Planning Business Rules using MultiplyUnbalanced,  DivideUnbalanced, Trailing

functions such as trailing 12 months, and Allocations. 

When using GetDataBufferUsingFormula, FilterMembers and RemoveMembers are used in

conjunction to shrink down dimensional members in the source Data Buffer.

FilterMembers

FilterMembers change a data buffer and only include numbers for the specified Dimensions. The

first parameter is the starting data buffer. This can be a variable name or an entire math equation

in parentheses. There can be as many parameters as needed to specify Member Filters and

different Member Filters can be used for multiple Dimension types. The resulting filtered data

buffer will only contain numbers that match the Members in the filters.

GetDataBufferUsingFormula Usage

Example using GetDataBufferUsingFormula in a working formula:

Example using GetDataBufferUsingFormula with FilterMembers and MultipleUnbalanced in a

working formula:

API Overview Guide 104

Unbalanced Math Functions



API Overview Guide 105

Unbalanced Math Functions


	Introduction
	Development Technologies
	Programming Language
	User Interface Technology
	Server Technology
	Database Technology

	Developer Fundamentals
	VB.Net and C#
	In-Solution Documentation
	Business Rules Editor Overview
	Helpful Resources
	VB.Net
	Microsoft VB.Net Learning
	Microsoft Visual Basic
	C#
	Microsoft C# Learning



	Platform Engines
	Workflow Engine
	Stage Engine
	Finance Engine
	Data Quality Engine
	Data Management Engine
	Presentation Engine
	BRApi

	API Structure and Organization
	Namespaces
	Namespaces Defined
	Namespace Hierarchy
	Microsoft Financial Calls
	In-Solution Development
	Custom Development
	Custom Web Development



	Using System Tools
	System Business Rules
	Database
	Tables
	Tools
	Data Records


	Event Listing
	Event Handler Business Rules
	Event Firing Sequences
	Clear Cube Data
	Clear Stage Data
	Execute Data Management
	Import Data Connection
	Import Excel File
	Import Text File
	Process Form
	Process Journal
	Process Workflow



	Finance Functions APIs
	Member ID
	Api.Pov.Time.MemberId
	Api.Pov.Time.MemberId Usage

	Api.Pov.Entity.MemberId
	Api.Pov.Entity.MemberId Usage

	Api.Pov.Account.MemberId
	Api.Pov.Account.MemberId Usage


	Dimension Primary Key - DimPk
	DimPK Usage

	Dimension Type Id
	DimTypeID Usage

	Data Unit Dimension POV
	Data Unit Dimension POV Usage

	Time Functions
	Api.Time.GetYearFromId
	Api.Time.GetPeriodNumFromId
	Api.Time.GetPeriodNumFromId Usage

	Api.Time.GetNumDaysInTimePeriod
	Api.Time.GetNumDaysInTimePeriod Usage

	Api.Time.AddTimePeriods
	Api.Time.AddTimePeriods Usage

	Api.Time.AddYears
	Api.Time.AddYears Usage


	Using Member Functions for Calculations
	GetMember
	GetMember Usage

	GetMemberId
	GetMemberID Usage

	GetBaseMembers
	GetBaseMembers Usage


	Writing Stored Calculations
	Overload Function
	Api.Data.Calculate Usage

	IsDurableCalculatedData
	IsCurableCalculatedData Usage

	Eval Function
	Eval Function Usage


	Summary
	Remove Functions
	RemoveZeros
	RemoveNoData
	Remove Functions Usage

	GetDataBuffer Functions
	GetDataBuffer Function
	GetDataBuffer Usage

	Unbalanced Math Functions
	Unbalanced Math Functions
	Unbalanced Math Functions Usage
	GetDataBufferUsingFormula Function
	FilterMembers
	GetDataBufferUsingFormula Usage



